Close
  Indian J Med Microbiol
 

Figure 10: Involvement of oxidative stress stimuli, reactive oxygen species, and apoptosis induction by Clinacanthus nutans ethyl acetate fraction. (a) Bar chart displays the MTT assay of Clinacanthus nutans ethyl acetate fraction-treated HCT116 when pretreated in the presence and absence of 1 mM N-acetyl cysteine. (b) Histogram displays the intracellular reactive oxygen species level in the presence and absence of 1 mM N-acetyl cysteine for 1 h on untreated and treated HCT116 with 200 μg/mL of Clinacanthus nutans ethyl acetate fraction. (c) Western blot analysis of caspase-3 and caspase-9 proteins pretreated with 1 mM N-acetyl cysteine. The data are represented as the mean ± standard error of three independent experiments. Asterisks indicate significantly different value from control (*P < 0.05). Double asterisks indicate significantly different value compared to the treated cells without 1 mM N-acetyl cysteine

Figure 10: Involvement of oxidative stress stimuli, reactive oxygen species, and apoptosis induction by <i>Clinacanthus nutans</i> ethyl acetate fraction. (a) Bar chart displays the MTT assay of <i>Clinacanthus nutans</i> ethyl acetate fraction-treated HCT116 when pretreated in the presence and absence of 1 mM N-acetyl cysteine. (b) Histogram displays the intracellular reactive oxygen species level in the presence and absence of 1 mM N-acetyl cysteine for 1 h on untreated and treated HCT116 with 200 μg/mL of <i>Clinacanthus nutans</i> ethyl acetate fraction. (c) Western blot analysis of caspase-3 and caspase-9 proteins pretreated with 1 mM N-acetyl cysteine. The data are represented as the mean ± standard error of three independent experiments. Asterisks indicate significantly different value from control (*<i>P</i> < 0.05). Double asterisks indicate significantly different value compared to the treated cells without 1 mM N-acetyl cysteine