Close
  Indian J Med Microbiol
 

Figure 4: The loss of mitochondrial membrane potential and cytosolic release of cytochrome c by ethanol extract of Citrus unshiu peel in MCF-7 cells. (a) After 24 h of incubation with the indicated concentrations of ethanol extract of Citrus unshiu peel, the cells were stained with 1: 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide-1 dye and were then analyzed on a flow cytometer. This was done in order to evaluate the changes in mitochondrial membrane potential. An example of representative results according to each treatment concentration is presented. (b) Cells cultured under the same conditions were lysed, and cytosolic and mitochondrial proteins were separated by sodium-dodecyl sulfate polyacrylamide gel electrophoresis and transferred to the membranes. The membranes were probed with an anti-cytochrome c antibody. Proteins were visualized using an enhanced chemiluminescence detection system. Equal protein loading was confirmed by the analysis of actin and cytochrome oxidase subunit VI (COX VI) in each protein extract. Representative images of at least three independent experiments are shown

Figure 4: The loss of mitochondrial membrane potential and cytosolic release of cytochrome <i>c</i> by ethanol extract of <i>Citrus unshiu</i> peel in MCF-7 cells. (a) After 24 h of incubation with the indicated concentrations of ethanol extract of <i>Citrus unshiu</i> peel, the cells were stained with 1: 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide-1 dye and were then analyzed on a flow cytometer. This was done in order to evaluate the changes in mitochondrial membrane potential. An example of representative results according to each treatment concentration is presented. (b) Cells cultured under the same conditions were lysed, and cytosolic and mitochondrial proteins were separated by sodium-dodecyl sulfate polyacrylamide gel electrophoresis and transferred to the membranes. The membranes were probed with an anti-cytochrome <i>c</i> antibody. Proteins were visualized using an enhanced chemiluminescence detection system. Equal protein loading was confirmed by the analysis of actin and cytochrome oxidase subunit VI (COX VI) in each protein extract. Representative images of at least three independent experiments are shown