Pharmacognosy Magazine

SHORT COMMUNICATION
Year
: 2019  |  Volume : 15  |  Issue : 62  |  Page : 168--172

Inducible nitric oxide synthase downregulation and cellular antioxidant enzyme enhancing potential of oleanolic acid from Isodon wightii (Bentham) H. Hara against lipopolysaccharide-induced liver damage in bagg albino strain C mice


Madhusudhanan Gogul Ramnath1, Ramaraj Thirugnanasampandan1, Sadasivam Mathusalini2, Gunasekaran Bhuvaneswari1, Selvaraj Vasantharani1, Palathurai Subramaniam Mohan2 
1 Department of Biotechnology, Laboratory of Plant Tissue Culture and Molecular Bioprospection, Kongunadu Arts and Science College, G.N. Mills, Coimbatore, Tamil Nadu, India
2 Department of Chemistry, Bharathiar University, Coimbatore, Tamil Nadu, India

Correspondence Address:
Ramaraj Thirugnanasampandan
Department of Biotechnology, Laboratory of Plant Tissue Culture and Molecular Bioprospection, Kongunadu Arts and Science College, G.N. Mills, Coimbatore - 641 029, Tamil Nadu
India

Background: Isodon wightii (Bentham) H. Hara is an aromatic medicinal herb belongs to Lamiaceae which has been considered as a prolific source of diterpenoids with diverse structural and medicinal values. Objective: The objective of the study is to evaluate in vivo anti-inflammatory activity of oleanolic acid from I. wightii against lipopolysaccharide-induced liver inflammation in Bagg albino strain C mice. Materials and Methods: Fractions were obtained using silica gel 60–120 mesh column chromatography, and structural elucidation was done using spectroscopic studies. Hepatoprotection, inducible nitric oxide synthase (iNOS) gene downregulation and the levels of cellular antioxidant enzymes with their respective gene expression were analyzed using reverse transcriptase-polymerase chain reaction (RT-PCR). Results: White amorphous powder (58 mg) was isolated from petroleum ether extract (15 g) eluted with petroleum ether: ethyl acetate mixture (90.5:9.5), and structure has been elucidated as oleanolic acid. 50 μg of oleanolic acid showed effective hepatoprotection and multiple fold increase in the level of antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase, and glutathione S-transferase. RT-PCR analysis revealed that oleanolic acid had a remarkable effect on iNOS downregulation and antioxidant genes upregulation at 50 μg concentration. Conclusion: The present study proves that oleanolic acid possesses liver protecting activity with a positive effect on increased antioxidant enzymes production. The triterpenoid acid and oleanolic acid could be a suitable natural source for preparing hepatoprotective tonics.


How to cite this article:
Ramnath MG, Thirugnanasampandan R, Mathusalini S, Bhuvaneswari G, Vasantharani S, Mohan PS. Inducible nitric oxide synthase downregulation and cellular antioxidant enzyme enhancing potential of oleanolic acid from Isodon wightii (Bentham) H. Hara against lipopolysaccharide-induced liver damage in bagg albino strain C mice.Phcog Mag 2019;15:168-172


How to cite this URL:
Ramnath MG, Thirugnanasampandan R, Mathusalini S, Bhuvaneswari G, Vasantharani S, Mohan PS. Inducible nitric oxide synthase downregulation and cellular antioxidant enzyme enhancing potential of oleanolic acid from Isodon wightii (Bentham) H. Hara against lipopolysaccharide-induced liver damage in bagg albino strain C mice. Phcog Mag [serial online] 2019 [cited 2022 May 18 ];15:168-172
Available from: http://www.phcog.com/article.asp?issn=0973-1296;year=2019;volume=15;issue=62;spage=168;epage=172;aulast=Ramnath;type=0