Pharmacognosy Magazine

ORIGINAL ARTICLE
Year
: 2018  |  Volume : 14  |  Issue : 57  |  Page : 311--318

Amelioration of oxidative stress through apoptosis-mediated pathway in colon cancer cells by hexane fraction of Moringa oleifera extract


Liang Jinghua1, Sun Linmei1, He Ping2, Sivapragasam Gothai3, Katyakyini Muniandy3, S Suresh Kumar4, Norhaizan Mohd Esa5, Palanisamy Arulselvan6 
1 Department of Anorectal, Xi'an Traditional Chinese Medicine Hospital, Xi'an, Shaanxi Province, 710021, China
2 Department of Anorectal, Chengdu Rectum Faculty Hospital, Chengdu City, Sichuan Province 610075, China
3 Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
4 Departments of Medical Microbiology and Parasitology, Universiti Putra Malaysia, Selangor, Malaysia
5 Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
6 Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia; Muthayammal Centre for Advanced Research, Muthayammal College of Arts and Science, Rasipuram, Namakkal, Tamil Nadu, India

Correspondence Address:
He Ping
Department of Anorectal, Chengdu Rectum Faculty Hospital, 152 East Daqiang Street, South Taisheng Road, Chengdu City, Sichuan Province 610075
China
Palanisamy Arulselvan
Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor

Background: Colorectal cancer (CRC) is one of the most common cancers worldwide and it is predicted that the number of cases will rise to 2.4 million by 2035. Therefore, preventative and therapeutic approaches are essential for the fight against cancer. The management of colon cancer through conventional methods mainly surgery, radiotherapy, and chemotherapy have produced unpredictable complications, especially metastasis and relapse of tumors, leading to loss of patient's life. In the last decade, association between oxidative stress and CRC has been intensively studied and it was found that the CRC has increased levels of oxidative stress markers. Natural dietary supplements provide a better choice for cancer prevention and treatments. Moringa oleifera (MO) generally known as the Miracle tree and most of the parts have high nutritional and medicinal properties; though, the leaves are suggested to have the highest concentration of vitamins, minerals, amino acids, and active compounds. Materials and Methods: The major purpose of the analysis was to investigate the dose-dependent cytotoxic and apoptosis-inducing effects of the hexane fraction of the MO extract on the colon cancer cells, HT-29. The anticancer potential of hexane fraction of MO extract was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and apoptotic mechanistic action by fluorescent staining, caspases, and immunoblot analysis. Results: The hexane fractions of MO extract suppressed the proliferation of HT-29 cells and induced apoptosis through mitochondrial apoptotic pathway. Conclusions: These findings suggested that hexane fraction of the extract has significant cytotoxic and apoptotic activity and therefore it could be discovered as a unique target for anticancer drug development. Abbreviations used: CRC: Colorectal cancer; MO: Moringa oleifera; HT-29: Colon cancer cells; HFMOL: Hexane fraction of Moringa oleifera leaves.


How to cite this article:
Jinghua L, Linmei S, Ping H, Gothai S, Muniandy K, Kumar S S, Esa NM, Arulselvan P. Amelioration of oxidative stress through apoptosis-mediated pathway in colon cancer cells by hexane fraction of Moringa oleifera extract.Phcog Mag 2018;14:311-318


How to cite this URL:
Jinghua L, Linmei S, Ping H, Gothai S, Muniandy K, Kumar S S, Esa NM, Arulselvan P. Amelioration of oxidative stress through apoptosis-mediated pathway in colon cancer cells by hexane fraction of Moringa oleifera extract. Phcog Mag [serial online] 2018 [cited 2022 May 21 ];14:311-318
Available from: http://www.phcog.com/article.asp?issn=0973-1296;year=2018;volume=14;issue=57;spage=311;epage=318;aulast=Jinghua;type=0