ORIGINAL ARTICLE
Year : 2016 | Volume
: 12 | Issue : 47 | Page : 188--192
Rapid determination of puerarin by near-infrared spectroscopy during percolation and concentration process of puerariae lobatae radix
Xue Jintao1, Yang Quanwei2, Jing Yun1, Liu Yufei1, Li Chunyan3, Yang Jing4, Wu Yanfang1, Li Peng1, Wan Guangrui1 1 Department of TCM, School of Pharmacy, Xinxiang Medical University, Xinxiang, PR China 2 Department of pharmacy, Wu Han NO.1 Hospital, Wuhan, Hubei Province, PR China 3 Department of TCM, School of Pharmacy, Xinxiang Medical University; Department of pharmacy, Sanquan Medical College, Xinxiang, PR China 4 Department of pharmacy, Puyang Health School, Puyang, Henan Province, PR China
Correspondence Address:
Wan Guangrui School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan Province PR China
Background: Gegen (Puerariae Labatae Radix) is one of the important medicines in Traditional Chinese Medicine. The studies showed that Gegen and its preparation had effective actions for atherosclerosis. Objective: Near-infrared (NIR) was used to develop a method for rapid determination of puerarin during percolation and concentration process of Gegen. Materials and Methods: About ten batches of samples were collected with high-performance liquid chromatography analysis values as reference, calibration models are generated by partial least-squares (PLS) regression as linear regression, and artificial neural networks (ANN) as nonlinear regression. Results: The root mean square error of prediction for the PLS and ANN model was 0.0396 and 0.0365 and correlation coefficients (r2) was 97.79% and 98.47%, respectively. Conclusions: The NIR model for the rapid analysis of puerarin can be used for on-line quality control in the percolation and concentration process.
SUMMARY
- Near-infrared was used to develop a method for on.line quality control in the percolation and concentration process of Gegen
- Calibration models are generated by partial least.squares.(PLS) regression as linear regression and artificial neural networks.(ANN) as non.linear regression
- The root mean square error of prediction for the PLS and ANN model was 0.0396 and 0.0365 and correlation coefficients.(r2) was 97.79% and 98.47%, respectively.
Abbreviations used: NIR: Near-Infrared Spectroscopy; Gegen: Puerariae Loabatae Radix; TCM: Traditional Chinese Medicine; PLS: Partial least-squares; ANN: Artificial neural networks; RMSEP: Root mean square error of validation; R2: Correlation coefficients; PAT: Process analytical technology; FDA: The Food and Drug Administration; Rcal: Calibration set; RMSECV: Root mean square errors of cross-validation; RPD: Residual predictive deviation; SLS: Straight Line Subtraction; MLP: Multi-Layer Perceptron; MSE: Mean square error.
Wan Guangrui
How to cite this article:
Jintao X, Quanwei Y, Yun J, Yufei L, Chunyan L, Jing Y, Yanfang W, Peng L, Guangrui W. Rapid determination of puerarin by near-infrared spectroscopy during percolation and concentration process of puerariae lobatae radix.Phcog Mag 2016;12:188-192
|
How to cite this URL:
Jintao X, Quanwei Y, Yun J, Yufei L, Chunyan L, Jing Y, Yanfang W, Peng L, Guangrui W. Rapid determination of puerarin by near-infrared spectroscopy during percolation and concentration process of puerariae lobatae radix. Phcog Mag [serial online] 2016 [cited 2022 May 28 ];12:188-192
Available from: http://www.phcog.com/article.asp?issn=0973-1296;year=2016;volume=12;issue=47;spage=188;epage=192;aulast=Jintao;type=0 |
|