Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Ahead of Print

Exploring cross-linked tragacanth as novel excipient-proof-of-concept


1 Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
2 School of Pharmacy, Management and Science University, Shah Alam, Selangor, Malaysia
3 Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Karnataka, India
4 Department of Pharmaceutical Chemistry, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Karnataka, India
5 Department of Pharmaceutics, Annamacharya College of Pharmacy, Rajampet, Andhra Pradesh, India
6 Department of Medicine, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
7 Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IIT-B), Mumbai, India
8 Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia; Department of Pharmaceutics, Vidya Siri College of Pharmacy, Bengaluru, India
9 Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia

Correspondence Address:
Anroop B Nair,
Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982
Saudi Arabia
N Raghavendra Naveen,
Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Mandya - 571 448, Karnataka
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/pm.pm_601_21

Background: Tragacanth, a natural gum, is frequently used as stabilizer for colloidal systems and as a binder in tablets. Materials from natural sources are in increasing demand to solve the current global environmental problems arising from synthesis involving petroleum-based substances. Objectives: In this context, we improved functionality of tragacanth through crosslinking and extended its application for directly compressed fast dissolving systems. Fast dissolving formulations upon settling on the tongue disintegrate promptly and release the medicament, thus making it especially suitable for paediatrics, geriatrics, bedbound, or incapacitated patients. Materials and Methods: Cross-linked tragacanth (CLT) was explored as a potent disintegrant and compared with sodium starch glycolate and Crospovidone for its effect on compressibility and release of metoclopramide hydrochloride from tablets made by direct compression and sublimation method. Formulations made using CLT were optimized for swelling capacity, absorption efficiency, and moisture sorption capacity. Results: The most appropriate controls for linkage of tragacanth were 1:0.4 proportion of tragacanth: Epichlorohydrin, at 105°C temperature for 45 min of reaction. Prepared formulations showed desired disintegration and wetting time. Formulations made using camphor showed porosity because of sublimation and favored rapid disintegration. Based on the drug release study, it is confirmed that formulation with 4% CLT and 20% camphor prepared by sublimation process exhibited highest drug release, i. e. 99.23% within 15 min. Conclusion: This study demonstrates the novel applicability of tragacanth as an effective natural superdisintegrant after cross-linking and provides a sustainable alternative to synthetic superdisintegrants while formulating the fast-disintegrating tablets.


    
 
 
 

  Search Pubmed for
 
    -  Nair AB
    -  Fattepur S
    -  Naveen N R
    -  Goudanavar P
    -  Koppuravuri NP
    -  Gowthami B
    -  Telsang M
    -  Osmani RA
    -  Sreeharsha N
    -  Habeebuddin M
 
 
 
 
 
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed501    
    PDF Downloaded23    

Recommend this journal