Phytochemical Standardization of Panchavalkala: An Ayurvedic Formulation and Evaluation of its Anticancer Activity in Cervical Cancer Cell Lines

Shama Aphale¹, Savita Pandita¹, Prerna Raina¹, J. N. Mishra², Ruchika Kaul-Ghanekar¹

¹Cancer Research Lab, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra; ²Bharat Sewa Sansthan, Moti Mahal, Rana Pratap Marg, Lucknow, Uttar Pradesh, India

Submitted: 11-05-2018 Revised: 28-06-2018 Published: 21-11-2018

ABSTRACT

Background: Cervical cancer is the most common malignant disease affecting women worldwide. The currently available therapies for cancer, even though effective, affect the patient’s health severely due to the associated side effects. Thus, nowadays, complementary/alternative medicines are being extensively researched upon for their use as an adjunct therapy. Panchavalkala, an Ayurvedic formulation, is traditionally being used as a douche in leukorrhea and other gynecological diseases. Objective: The objective of the study was to phytochemically standardize aqueous extract of Panchavalkala (PVaq) and evaluate its anticancer activity against human cervical cancer cell lines. Materials and Methods: The phytochemical characterization of PVaq was done by liquid chromatography–mass spectrometry (LCMS) technique. The effect of PVaq on the viability of SiHa and HeLa cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide dye assay. The effect of the extract on growth kinetics was evaluated by trypan blue dye exclusion method and soft agar assay. Results: LCMS analysis showed presence of 77 compounds, of which 15 major compounds included proanthocyanidin B1, chlorogenic acid, caffeic acid, epicatechin, leucopelargonidin 3-O-alpha-L-rhamnomo-beta-D-glucopyranoside, leucocyanidin, naringenin-7-o-glucoside, mesoinositol, catechin, vogelin E, mesoinositol, benzenic acid, bergenin, acacetin, and gallic acid. PVaq significantly (P < 0.001) reduced the viability of SiHa and HeLa cells with an IC₅₀ of 125.8 and 96.0 µg/ml, respectively. It also reduced the growth of cervical cancer cells in a dose- and time-dependent manner. Conclusion: This preliminary data suggests that PVaq exhibits potential anticancer activity and warrants further studies for detailed elucidation of its mechanism of action. Key words: Aqueous extract of Panchavalkala, cell viability, cervical cancer, growth kinetics, liquid chromatography–mass spectrometry

SUMMARY

• In the present study, we have done phytochemical standardization of aqueous extract of Panchavalkala (PVaq) and evaluated its anticancer activity against cervical cancer cell lines. PVaq showed presence of the phytocompounds having reported antioxidant, anti-inflammatory, and anticancer activities
• PVaq decreased the viability of human papillomavirus-positive cervical cancer cells in a dose-dependent manner
• It altered the growth kinetics of the cancer cells in a dose- and time-dependent manner.

INTRODUCTION

Cervical cancer is the second most leading cause of cancer death among Indian women.[1] Every year in India, 122,844 women are diagnosed with cervical cancer and 67,477 die from the disease.[2] The persistent infection with human papillomavirus (HPV), notably type 16 and 18 has been found to be the primary cause for cervical cancer.[3] The available conventional therapies which include surgery/chemotherapy/radiotherapy have greatly reduced the mortality; however, they are associated with serious adverse events.[4] Nowadays, cancer research has shifted its focus towards identification of herbal based drugs that have no or minimum adverse events.[5,6] The available conventional therapies which include surgery/chemotherapy/radiotherapy have greatly reduced the mortality; however, they are associated with serious adverse events.[5,6] Nowadays, cancer research has shifted its focus towards identification of herbal based drugs that have no or minimum adverse events.

Access this article online
Website: www.phcog.com
Quick Response Code: [QR Code Image]

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commericially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

DOI: 10.4103/pm.pm_252_18
Panchavalkala is an Ayurvedic formulation comprising equal proportions of bark materials of *Ficus benghalensis, Ficus virens, Ficus religiosa, Ficus glomerata,* and *Thespesia populnea.* Traditionally, it has been used for the treatment of female infertility and endometriosis-related problems. The decoction has been extensively used as a douche in leukorrhea and other vaginal diseases. It has also been reported that regular douching of the genital tract with the decoction of Panchavalkala helps in reduction of symptoms related to vaginitis. In addition, the individual components of the formulation have well reported anticancer activity.

In the present study, we have for the first time performed liquid chromatography–mass spectrometry (LCMS) profiling of aqueous extract of Panchavalkala (PVaq) and evaluated its anticancer activity against HPV16+ (SiHa) and HPV18+ (HeLa) cervical cancer cell lines. LCMS profiling revealed the presence of compounds with reported anti-inflammatory, antioxidant, and anticancer properties. Treatment of SiHa and HeLa cells with PVaq significantly reduced their viability and growth kinetics, thereby signifying the anticancer potential of the formulation.

MATERIALS AND METHODS

Dulbecco’s Modified Eagle’s Medium (DMEM) powder, penicillin and streptomycin were purchased from Invitrogen/Gibco (Grand Island, NY, USA). Agarose was purchased from Gibco (DNA grade, BRL, CA, USA). Fetal bovine serum (FBS) and (3,4,5-dimethyldiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Tissue culture plasticware was purchased from BD Biosciences (San Diego, CA, USA). The human cervical carcinoma cell lines, SiHa (HPV-16) and HeLa (HPV-18), were obtained from National Center for Cell Science, Pune, Maharashtra, India. The cells were grown in DMEM supplemented with 10% FBS, 2 mM L-glutamine, and antibiotics (100 units/ml penicillin and streptomycin). The cells were maintained in a humidified 5% CO₂ incubator at 37°C.

Plant material and extraction

Barks of *F. religiosa* L. (Auth. 17-256), *F. virens* (Auth. 17-252), *F. glomerata* (Auth. 17-251), and *T. populnea* (Auth. 17-253) were collected from Pune, Maharashtra, India. Botanical identification of plant material was carried out at Agharkar Research Institute, Pune, Maharashtra, India. The barks of all the five plants were chopped into small pieces, shade dried at ambient conditions, and (3-4,5-dimethyldiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Tissue culture plasticware was purchased from BD Biosciences (San Diego, CA, USA). The human cervical carcinoma cell lines, SiHa (HPV-16) and HeLa (HPV-18), were obtained from National Center for Cell Science, Pune, Maharashtra, India. The cells were grown in DMEM supplemented with 10% FBS, 2 mM L-glutamine, and antibiotics (100 units/ml penicillin and streptomycin). The cells were maintained in a humidified 5% CO₂ incubator at 37°C.

Liquid Chromatography–mass spectroscopy

Non-targeted and targeted HPLC-MS QTOF analysis was performed as described earlier. Briefly, 10 µL of sample was injected onto an Agilent 1290 HPLC system having Zorbax Eclipse Plus C18 column (2.1 mm × 100 mm, 1.8 µm particle sizes). The mobile phases consisted of (A) water and (B) acetonitrile (LCMS grade, J. T. Baker) with flow rate of 0.3 mL/min and 95:5 acetonitrile/water at a flow rate of 0.7 mL/min. Both mobile phases were modified with 0.1% (v/v) formic acid for MS analysis in positive mode and with 5 mm ammonium acetate for analysis in negative mode. The chromatographic conditions utilized for the study consisted of the first 5 min run isocratically at 5% B; a gradient of B from 95% to 5% was applied from 5 min to 30 min, followed by 3 min isocratically at 100%. MS analysis was performed on an Agilent 6530 Quadrupole time-of-flight spectrometer fitted with an electrospray ionization source in both positive and negative mode. Data were analyzed using Mass Hunter Qualitative Analysis Software Package (Agilent Technologies) and online database Metlin. Blanks using each of the solvent extraction systems were analyzed using “Find by Molecular Feature” algorithm in the software package to generate a compound list of molecules with significant abundances >10,000 counts. This was then used as an exclusion list to eliminate background contaminant compounds from the analysis of the extracts. The data were analyzed using “Find by Molecular Feature” function to generate a list of compounds with empirical formula in the extracts. Compound lists were then screened against online mass databases; METLIN Metabolomics Database and MassBank Database.

Cell viability assay

SiHa and HeLa cells were seeded at a density of 1 × 10⁵ cells/ml in 96-well plates. The cells were treated with different concentrations (0, 10, 20, 40, 80, 160, 320, and 640 µg/ml) of PVaq in each well in triplicates for 24 h. Cell viability was determined by MTT assay as described previously.

Cell growth analysis

SiHa and HeLa cells were seeded at a density of 1 × 10⁵ cells/ml in 24-well plates in triplicates. Next day, the cells were treated with different concentrations of PVaq (0–320 µg/ml) for 24, 48, and 72 h. The cells were harvested and counted for viability with trypan blue dye using a hemocytometer.

Soft agar assay

SiHa and HeLa cells (5 × 10⁵ cells/ml) treated with different concentrations of PVaq (0–320 µg/ml) were mixed at 40°C with 0.35% agarose in culture medium and gelled at room temperature for 20 min over a previously gelled layer of 0.5% agarose in culture medium in 6-well plates. After incubation for 2 weeks, the colonies were counted in ten different fields using an Axiovert 200M microscope (Carl Zeiss, Germany), and the average value was calculated.

Statistical analysis

All the results were obtained from three independent experiments, each performed in triplicates and the values have been presented as mean ± standard deviation. Differences among means were tested for statistical significance using one-way analysis of variance. The analyses were carried out using GraphPad Prism 5 software (San Diego, CA, USA). *P < 0.05, **P < 0.01, ***P < 0.001 were considered to be statistically significant.

RESULTS

Liquid Chromatography–mass spectroscopy analysis

LCMS analysis of PVaq showed the presence of a range of phytochemicals, which included high levels of phenolics and flavonoids and moderate levels of tannins. A total of 77 compounds were identified [Supplementary Table 1]. The peaks of the compounds were obtained at different retention times. The highest peak was at the retention time of 15.54, followed by retention times of 15.11, 10.61, 8.74, 6.95, 5.14, 4.72, 2.97, 2.83, 0.98, 0.64, and 0.45, corresponding to the compounds behenic acid...
TABLE 1: Major compounds present in panchavalkala identified by liquid chromatography-mass spectroscopy

<table>
<thead>
<tr>
<th>Name of identified compound</th>
<th>Empirical formula</th>
<th>Observed RT</th>
<th>M/Z value</th>
<th>Observed mass</th>
<th>Abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behenic acid</td>
<td>C22 H44 O2</td>
<td>15.54</td>
<td>340.33413</td>
<td>340.3335</td>
<td>-</td>
</tr>
<tr>
<td>Vogelin E</td>
<td>C20 H18 O6</td>
<td>15.11</td>
<td>354.11033</td>
<td>354.1079</td>
<td>-</td>
</tr>
<tr>
<td>Acacetin</td>
<td>C16H12O2</td>
<td>10.61</td>
<td>284.06847</td>
<td>284.0678</td>
<td>69350.3</td>
</tr>
<tr>
<td>Leucoparagonidin 3-O-alpha-L-rhamno-beta-D-glucopyranoside</td>
<td>C22H34O15</td>
<td>8.74</td>
<td>598.18977</td>
<td>598.1871</td>
<td>1073</td>
</tr>
<tr>
<td>Naringenin-7-O-Glucoside</td>
<td>C21 H22 O10</td>
<td>6.95</td>
<td>434.12129</td>
<td>434.1209</td>
<td>22504.89</td>
</tr>
<tr>
<td>Epicatechin</td>
<td>C15 H14 O6</td>
<td>5.14</td>
<td>290.07903</td>
<td>290.0787</td>
<td>1517.73</td>
</tr>
<tr>
<td>Proanthocyanidin B1</td>
<td>C30H26O12</td>
<td>4.72</td>
<td>578.14242</td>
<td>578.1401</td>
<td>1228.51</td>
</tr>
<tr>
<td>Chlorogenic acid</td>
<td>C16H18O9</td>
<td>2.97</td>
<td>354.09508</td>
<td>354.0941</td>
<td>2203.07</td>
</tr>
<tr>
<td>bergenin</td>
<td>C14H16O9</td>
<td>2.83</td>
<td>328.07943</td>
<td>328.0803</td>
<td>5188</td>
</tr>
<tr>
<td>Leucoecynidin</td>
<td>C15 H14 O7</td>
<td>0.98</td>
<td>306.07395</td>
<td>306.0761</td>
<td>-</td>
</tr>
<tr>
<td>gallic acid</td>
<td>C7H6O3</td>
<td>0.64</td>
<td>170.02152</td>
<td>170.0214</td>
<td>1107.61</td>
</tr>
<tr>
<td>Mesoinositol</td>
<td>C6H12O6</td>
<td>0.45</td>
<td>180.06338</td>
<td>180.0632</td>
<td>4257.39</td>
</tr>
<tr>
<td>Caffeic acid</td>
<td>C9H8O2</td>
<td>2.36</td>
<td>180.04225</td>
<td>180.0423</td>
<td>-</td>
</tr>
<tr>
<td>Catechin</td>
<td>C15 H14 O6</td>
<td>5.14</td>
<td>290.07903</td>
<td>290.0787</td>
<td>1517.73</td>
</tr>
</tbody>
</table>

RT: Retention time

(m/z 340.33413), Vogelin E (m/z 354.11033), acacetin (m/z 284.06847), leucoparagonidin 3-O-alpha-L-rhamno-beta-D-glucopyranoside (m/z 598.18977), naringenin-7-o-glucoside (m/z 434.12129), epicatechin (m/z 290.07903), proanthocyanidin b1 (m/z 578.14242), chlorogenic acid (m/z 354.09508), bergenin (m/z 328.07943), leucoecynidin (m/z 306.07395), gallic acid (m/z 170.02152), mesoinositol (m/z 180.06338), caffeic acid (m/z 180.04225), and catechin (m/z 290.07903), respectively [Table 1 and Figure 1].

DISCUSSION

Despite therapeutic advances in cancer, the associated adverse events and chemoresistance remain major challenges to be addressed. During the past two decades, there have been extensive studies on the use of medicinal plants or their phytoconstituents as promising chemopreventive as well as anticancer agents. More than 60% of currently used anticancer drugs are originally derived from natural sources such as plants, marine organisms, and microorganisms.\[18,19\]

Traditional medicine that includes herbal-based drugs have been used worldwide from a long time to treat various chronic ailments including cancer. Various scientific studies, including ours, have suggested the potential of medicinal plants as anticancer drug candidates.\[11,14,17\] Ayurveda, the main traditional medical practice in India, primarily deals with the prevention of disease through healthy food habits and lifestyle.\[3,4,5,6,11,14,15,16,17\] It has been successful from very early times in using natural drugs and preventing or suppressing various tumors using various lines of treatment.\[20,21\] Charak Samhita (1500–2000 BC), the supposed first text of Ayurveda, reports various formulations in the form of kashya (decotions), each formulation containing different herbs that target a specific action.\[20\]

Panchavalkala is a well-known Ayurvedic polyherbal formulation that has been reported to be used against inflammation, to clear ulcers, dress wounds, as a douche in leukorrhea and other vaginal diseases.\[6\]

The free radical scavenging activity of Panchavalkala and its individual components has been reported.\[23\] Panchavalkala has been reported to be used as an adjunct in the treatment of leukorrhea.\[23\] The bark of the individual components of Panchavalkala which include T. populnea Solandexcocrea,\[24,25\] F. benghalensis L,\[26,27\] and F. religiosa L have been proven to possess antioxidant and anti-inflammatory activities. The present work reports for the first time the anticancer activity of Panchavalkala in cervical cancer.

PVAq showed presence of around 77 phytocompounds. Behenic acid is a fatty acid; vogelin is an isoflavone; and leucocynidin is a flavonoid with reported antidiabetic property.\[31\] Acacetin is a flavonoid with anti-inflammatory and anticancer properties.\[32,33\]

Leucoparagonidin 3-O-alpha-L-rhamno-beta-D-glucopyranoside is a flavonoid with reported antidiabetic property.\[34\] Naringenin-7-O-Glucoside, epicatechin, and proanthocyanidin B1 are flavonoids with reported antioxidant and antitumor properties.\[35\] bergenin is a glycoside with antihepatotoxic property.\[36\] naringenin is an anti-inflammatory, anti-HIV, antifungal, hepatoprotective, antiarrhythmic, neuroprotective, anti-inflammatory, immunomodulatory, and burn wound healing properties.\[37\] Chlorogenic acid is a fatty acid; vogelin is an isoflavone; and leucocynidin is a flavonoid with reported antidiabetic property.\[31\] Acacetin is a flavonoid with anti-inflammatory and anticancer properties.\[32,33\]
Figure 1: Liquid chromatography–mass spectrometry/mass spectrometry pattern of important compounds identified in aqueous extract of panchavalkala. Proanthocyanidin B1 (a), chlorogenic acid (b), epicatechin/Catechin (c), leucopelargonidin 3-O-alpha-L-rhamno-beta-D-glucopyranoside (d), naringenin-7-O-Glucoside (e), mesoinositol (f), bergenin (g), acacetin (h), gallic acid (i), leucocynidin (j), caffeic acid (k), vogelin E (l), behenic acid (m).
Acid is a bioflavonoid which exhibits pharmacological activity such as antioxidant,[40] antidiabetic,[41] and antiobesity.[41] Gallic acid is a phenol with antiviral,[42] anti-inflammatory,[43] anticancer,[44] and antidiabetic[45] properties. Mesoinositol is a sugar alcohol with no reported pharmacological activity. Caffeic acid and catechin are polyphenols with anti-inflammatory,[46] anticancer,[47,48] and antiviral[49,50] properties.

The presence of proanthocyanidin B1, chlorogenic acid, caffeic, and epicatechin acid present in PVaq could be contributed to the components of F. religiosa as reported earlier.[23] The presence of leucopelargonidin 3-o-alpha-l-rhamno-beta-d-glucopyranoside, leucocynidin, naringenin-7-o-glucoside, and mesoinositol could be contributed to the phytocompounds reported in the bark extract of F. benghalensis.[51-55] The phytocompounds catechin, vogelin E, and mesoinositol found in PVaq could be contributed to the reported compounds of F. viridis.[56,57] The phytocompounds behenic acid and bergenin PVaq have been reported in the bark extract of F. glomerata.[58] The phytocompounds acacetin and gallic acid in PVaq have been reported in T. populnea.[59-61] Thus, these data show the presence of marker compounds in the PVaq that could be used for confirming the authenticity of the formulation to avoid batch-to-batch variation.

Interestingly, PVaq exhibited anticancer activity against HPV-positive cervical cancer cell lines wherein it decreased the viability of the cells. Moreover, PVaq reduced the growth rate of cells in a time- and dose-dependent manner. The anticancer activity of PVaq could be attributed to the presence of different phytocompounds in the extract with reported anticancer activity. Proanthocyanidins,[62] catechin,[63,64] naringenin-7-o-glucoside,[65] and acacetin[66] have been reported to suppress the growth of breast cancer cells. Mesoinositol also has reported anticancer activity.[67] We have previously reported that F. religiosa,

Figure 2: Effect of aqueous extract of Panchavalkala on cell viability in SiHa and HeLa. The cells were treated with different concentrations (0–320 µg/ml) of aqueous extract of Panchavalkala for 24 h. The cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.

Figure 3: Effect of aqueous extract of Panchavalkala on growth kinetics of cervical cancer cells. SiHa (a) and HeLa (b) cells were treated with aqueous extract of Panchavalkala (0–80 µg/ml) for 24–72 h and the number of viable cells were counted using the trypan blue dye exclusion method. Data represent mean ± standard deviation of three independent experiments. (c) The cervical cancer cell lines (SiHa and HeLa) (5 × 10^5) along with aqueous extract of Panchavalkala (0–80 µg/ml) were grown in soft agar for 2 weeks. Colonies were counted from at least ten different areas and the average of each has been plotted. The data represent mean ± standard deviation of three independent experiments.
one of the components of PVaq, induced cell cycle arrest in SiHa and apoptosis in HeLa and apoptosis in HeLa (HPV-18 positive) cells. These preliminary data warrant future in-depth studies at molecular and in vivo levels to delineate the mechanism of anticancer activity of Panchvalkavala in detail.

CONCLUSION

Panchvalkavala, an Ayurvedic formulation, was reported to exhibit anticancer activity against HPV-positive cervical cancer cell lines. The phytochemical evaluation of the PVaq has shown the presence of phytochemicals that have reported anticancer activity, thereby signifying the importance of this formulation as a prospective drug candidate in the management of cervical cancer. However, detailed experimentation is required in the future for understanding the underlying mechanism of its action.

Acknowledgements

The authors thank Director of IRSG for his generous support and encouragement throughout the study period.

Financial support and sponsorship

This work was supported by funding from Bharat Seva Sansthan, Lucknow.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

SHAMA APHALE, et al.: Panchvalkala Exhibits Anti cancer Activity against Cervical Cancer Cells

