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ABSTRACT
Diabetes is a metabolic complication distinguished mainly by persistent 
hyperglycemia and is involved in the formation of reactive oxygen species, 
thereby causing oxidative stress, which is the major culprit for diabetic 
complications in different organs, including the vascular system. Controlling 
blood glucose is the most effective strategy for preventing diabetes and its 
complications. Currently, the available antidiabetic therapy is associated 
with several side effects, thus inexhaustible attention has been paid toward 
the development of natural compounds. The present review highlights the 
different types of flavonoids as potent antidiabetic agents along with their 
structure–activity relationship (SAR) studies, which will definitely aid in 
designing innovative molecules with improved antidiabetic efficacy. The 
type of substitution in the flavonoid core structure decides their bindings 
at different biological targets involved in diabetes development such as 
xanthine oxidase inhibitors, SGLT-II inhibitors, α-glucosidase inhibitors, 
PPAR-γ agonists, DPP-4 inhibitors, and glycogen phosphorylase inhibitors. 
Based on SAR investigation, a double bond between C2 and C3 positions, 
hydroxy substitutions at C5 and C7 positions of ring A, and substitution by 
the ketonic group at the C4 position were considered as lead modifications 
in the bioactivity of flavonoids for potent antidiabetic activity.
Key words: Anthocyanins, catechins, chalcone, diabetes, flavanol, 
flavanone, flavone, flavonoids, isoflavonoids

SUMMARY
•  Flavonoids possess amazing potential to attenuate blood glucose levels in 

diabetes owing to their diverse mechanisms, viz., the ability to suppress 
oxidative stress, improve insulin sensitivity, regulation of various processes 
such as glycolysis, gluconeogenesis, and enzymes such as α-glucosidase, 
xanthine oxidase, DPP, etc. Flavonoids from different classes possessing 
antidiabetic effectiveness have been isolated from plants that can be further 
modified to get novel molecules with improved efficacy.

Abbreviations used: GLUT-4: Glucose Transporter Type-4; DPP: Dipeptidyl 
Peptidase; SGLT: Sodium-Glucose Linked Transporter; PPAR: Peroxisome 
Proliferator-Activated Receptor; GPIs: Glycogen Phosphorylase Inhibitors; 
ARIs: Aldose Reductase Inhibitors.
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INTRODUCTION
Diabetes is considered the world’s utmost healthcare issue, 
affecting about 9% (475 million) of the population worldwide, and 
is one of the significant reasons for increased mortality, which, 
if not controlled, will increase to around 11% (700 million) by 
2045.[1-3] It is a metabolic disorder leading to insufficient production 
or utilization of insulin and is associated with an escalated chance 
of macrovascular and microvascular defects in various organs, 
including the heart, kidneys, retina, and brain.[4,5] Behavioral factors, 
including inappropriate diet, sedentary lifestyle, and smoking, further 
exaggerate the disease. Currently, available therapies have only a 
temporary antihyperglycemic effect and thus fail to prevent further 
diabetic complications.[6] Moreover, their adverse effects such as 
weight gain, gastrointestinal disturbances, fluid retention, insulin 
resistance, atherosclerosis, unregulated levels of postprandial glucose 
and glycosylated hemoglobin (HbA1c), and drug resistance, further 
limit their use.[7,8] It is therefore of great importance to explore novel 
antidiabetic molecules, which can guard patients against diabetic 
complications. Natural products, predominantly of plant origin, 
are the foremost choice for exploring promising hypoglycemic 
agents because of their ready availability, cost-effectiveness, and low 
toxicity. Plants possess diverse phytoconstituents such as flavonoids, 
alkaloids, terpenoids, saponins, and glycosides, which are responsible 
for their various pharmacological activities, including anticancer, 
antimalarial, antiviral, anti-inflammatory, and antidiabetic.[6,9-11] 
Flavonoids (Latin word flavus, meaning yellow), Figure  1, are 
polyphenolic compounds identified from an array of diverse plant 
constituents due to their various pharmacological activities such as 
antidiabetic,[12-14] anticancer,[15-19] anti-inflammation,[20-24] antiviral,[25,26] 
antimicrobial,[27-29] antimalarial,[30] immunomodulatory,[31] and anti-
obesity.[32,33] They are synthesized by the phenylpropanoid pathway[34] 
and are ubiquitous in nature, found abundantly in various families 
such as Polygonaceae, Rutaceae, Leguminosae, and Umbelliferae. 
Citrus fruits such as oranges, grapefruits, lemons, mandarins, and 
bergamots (Citrus bergamia) are rich sources of flavonoids. More 
than 5,000 flavonoids have been identified such as luteolin, apigenin, 
tangeretin, quercetin, kaempferol, myricetin, hesperidin, fisetin, 
galangin, genistein, isorhamnetin, baptigenin, pachypodol, taxifolin, 
naringenin, epigallocatechin gallate, glycitein, and daidzein,[35] several 
of which are accountable for imparting attractive colors to various 
plant parts mainly leaves, flowers, and fruits.[36] Due to their protective 
effects against various diseases, they are considered health-promoting 
and disease-preventing dietary supplements.[37] The core scaffold 
of flavonoids comprises a skeleton of 15-carbon atoms, abbreviated 
as C6-C3-C6, having two aromatic rings (A and B) connected by 
3-carbon containing ring C [Figure 1].
Extensive research has already been done in exploring the anti-diabetic 
properties of various classes of flavonoids[12,38]; therefore, the present 
study has been intended to collate all relevant information highlighting 
the role of flavonoids in diabetes with their associated structure–activity 
relationship (SAR), which will be beneficial to the keen researchers 

working in this area in designing novel compounds with significant 
hypoglycemic potential.

CLASSIFICATION OF FLAVONOIDS
Flavonoids are the most widely recognized polyphenols in the 
human regime, accounting for more than 60% of all polyphenols 
utilized. A large variety of flavonoids identified[39] has been further 
categorized chemically into numerous subclasses based on the 
location of ring B, along with the level of unsaturation and oxidation 
of the C ring. For instance, in isoflavones, the B ring is attached 
to the C ring at position-3, whereas in neo-flavonoids, the B ring 
is attached to the 4-position of the C ring. However, flavonoids in 
which the B ring is attached at position-2 of the C ring are further 
characterized into several subclasses, viz. flavones, isoflavone, 
flavonols, flavan-3-ol, flavanones, neoflavonoid, flavanonols, 
catechins, isoflavan, anthocyanins, and chalcone, depending upon 
the structural parameters of the C ring[40][Figure 2].

Flavonoids as antidiabetic agents
Flavanones
Naringin (I) and its aglycone portion naringenin (II), hesperidin 
(III), and taxifolin (IV) are flavanones found in citrus fruits, mainly 
grapefruits (highest amount), oranges, lime juice, tomatoes, wine, 
bergamot, and in tea, grass, and wine.[41] Flavanones are reported to 
exhibit significant hypoglycemic effects[7,42-45] owing to their potential to 
ameliorate insulin sensitivity by suppressing oxidative stress, receptor 
for advanced glycation end products (RAGE)/NF-κB mediated 
mitochondrial apoptosis, and activation of the IR/PDK1 pathway along 
with the regulation of glycolysis, gluconeogenesis, and α-glucosidase 
activity [Table 1].

Flavones
Flavones such as tangeretin (V), nobiletin (VI), luteolin (VII), and 
apigenin (VIII) are widely found in citrus fruits, celery, parsley, 
chamomile, mint, red pepper, apple, onion, cabbage, carrot, tomato skin, 
and many herbs.[73] Their hypoglycemic tendency[74-79] may be attributed 
to their different mechanisms, including stimulation of the AMPK 
pathway, PPARγ, and GLUT-4 expression, and inhibition of the MAPK 
pathway, as well as oxidative stress, as depicted in Table 2.

Flavonols
Flavonols, the structural blocks of proanthocyanins, are flavonoids 
with a hydroxyl group at position 3 of the C ring. Kaempferol (IX), 
quercetin (X), fisetin (XI), and myricetin (XII) are the most significant 
flavonols obtained from a variety of sources, viz., onion, kale, lettuce, 
apple, berries, scallions, tomatoes, apple, grapes, tea, red wine, and 
berries. Flavonols possess extensive health benefits, including their 
anticancer potential, antioxidant activity as well as reduced risk of 
vascular disease.[90] Their α-glucosidase, glucose-6-phosphatase, and 
DPP-4 inhibitory activity, glucokinase and GLP-I agonistic activity, 
and antioxidant nature make flavonols effective antihyperglycemic 
agents,[91-94] as evident from different studies [Table 3].

Isoflavonoids
Isoflavonoids, viz., daidzein (XIII) and genistein (XIV) are the leading and 
unique subclasses of flavonoids, yet holding a diminutive identification 
in the plant world, primarily in soybeans or leguminous plants. Some 
are, however, also present in microbes, where they help in the growth 
of phytoalexins during plant–microbe interactions.[40] Numerous studies 
have demonstrated the role of isoflavones as an antidiabetic[110,111] due to 
their tremendous actions on β-cell proliferation, insulin secretion, and 
α-glucosidase inhibition [Table 4].

Figure 1: Basic core structure (scaffold) of flavonoids
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Catechins
Catechins (XV) are flavonols with no keto group at the C3 position and 
are essentially found in various fruits such as black grapes, strawberries, 
and also in tea, cocoa, and chocolate, mainly as monomers (epicatechin 
and catechin) or oligomers (proanthocyanins). The antidiabetic 
efficacy of catechins[114] is largely attributed to their potential to regulate 
oxidative stress [Table 5].

Anthocyanins
Anthocyanins, an important class of flavonoids, are responsible for 
imparting color to plants and are known for their antioxidative tendency 
as well as reported antidiabetic potential[118-120] mainly due to their PPARγ 
agonistic activity and α-glucosidase, and GSH antagonistic activity 
[Table  6]. Cyanidin (XVI), delphinidin (XVII), malvidin (XVIII), 
peonidin (XIX), and pelargonidin (XX) are the chiefly recognized 
anthocyanins found abundantly in various fruits such as cranberries, 
blackcurrants, and blackberries.[121]

Chalcones
Chalcones, mainly phloridzin (XXI), arbutin (XXII), and phloretin 
(XXIII), are open-chain flavonoids with no C ring in their structure. 
Tomatoes, blueberries, pears, strawberries, and various wheat 
products are rich sources of chalcones that impart high nutritional and 
pharmacological benefits. Chalcones have an astonishing tendency to 
act on different therapeutic targets such as DPP-4, GLUT-4, SGLT-2, 
α-amylase, α-glucosidase, aldose reductase, PPAR-γ, and AMP-activated 
protein kinase, confirming their role in maintaining glucose levels in 
diabetic patients[133,134][Table 7].

SAR of Flavonoids toward Antidiabetic Activity
Flavonoids undoubtedly act as potent hypoglycemics via various 
mechanisms. With an approach for designing and refinement 
polyphenolic compounds, a structural modification technique has been 
discussed, which is generally known to be SAR studies. This is a term that 
refers to the association between chemical structures and the biological 
activity relationship of compounds. Moreover, understanding a drug’s 
mechanism of action is imperative for successfully using this approach. 
Based on the literature available, almost all positions of flavonoid 
scaffolds can be structurally changed. Several structural alterations by 
various types of medicinally important substituents have been discussed, 

which has inspired and attracted confront researchers to design novel 
flavonoids with improved activity[139][Figure 3].

Flavonoids as xanthine oxidase inhibitors
Because of the ability to prevent free radical generation, xanthine oxidase 
inhibitors have significant therapeutic potential for the management of 
diabetes.[140]Many of the planar flavonoids such as flavones and flavonols, 
including luteolin, kaempferol, quercetin, myricetin, and silybin, act as 
good inhibitors of xanthine oxidase, whereas non-planar flavonoids 
such as isoflavones and anthocyanidins were found least effective.[141] 
SAR studies indicated that hydrophobicity along with planar structure 
(coplanarity of ring B with rings A and C), unsaturation between C2 and 
C3, and a hydroxyl group at C5 and C7 of ring A or C3 and C4’of ring B 
are some of the essential requirements responsible for interaction with 
xanthine oxidase. Hydroxylation increases the electrostatic interaction 
with the enzyme, resulting in an enhanced activity. In addition, the 
substitution of the keto group at the C4 position is considered optimum 
for activity, as discussed in Figure 4. However, the presence of a bulky 
sugar moiety, methyl group, and hydroxyl group at C3 and C6 positions 
(ring A) of the flavonoid core structure was considered unfavorable for 
its binding at the target site.[142,143]

Various studies have been reported to explore the antidiabetic potential 
of flavonoids possessing inhibition toward the xanthine oxidase enzyme. 
In view of this, Guimaraes et al.[144]discussed the role of rutin (flavonoid) 
against myocardial dysfunction in diabetic rats by inhibiting this enzyme 
leading to decreased oxidative stress. Furthermore, the SAR study was 
also performed, which suggested that the presence of a dihydroxyl 
group at the C5 and C7 positions of ring A, modification by the catechol 
system in ring B, and ketone moiety at the C4 position of ring C with 
unsaturation in between C2 and C3 positions retard the absorption of 
glucose via the inhibition of xanthine oxidase enzyme.[144]

Flavonoids as α-glucosidase inhibitors
Inhibitors of α-glucosidase, being the most promising compounds 
in reducing postprandial hyperglycemia, serve as another imperative 
target for designing novel flavonoids such as antidiabetic agents due 
to their potential in reducing this enzyme activity. Flavonoids such as 
isorhamnetin, luteolin, naringenin, apigenin, kaempferol, isoquercetin, 
rutin, chalcone, and chrysin are reported as successful α-glucosidase 
inhibitors.[145]Like xanthine oxidase inhibitors, SAR studies reveal the 
presence of unsaturation at C2 and C3 positions, a catechol group in 

Figure 2: Types of flavonoids
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rings A (C7 and C8 positions) and B (C3’ and C4’ positions) along with 
a hydroxyl group (C3 position) in ring C, carbonyl group at C4 position 
potentiate the activity, as cited in Figure 5. Sugar substitution in any ring 
decreases the activity, but substitution by a phenolic group increases the 
inhibitory effect.[135,146]

To verify the above facts, Tang et al.[147] performed molecular simulation 
studies, which established a strong interaction between flavonoids against 
the α-glucosidase enzyme. This inhibition is further increased due to the 
presence of catechol moiety at ring B and hydroxyl substitution at C3, 
C7, and C8 positions as confirmed by SAR studies.[147] Similarly, Sarian 
et al.[148] also reported the significant role of flavonoids in the treatment of 
diabetes mellitus due to the presence of two crucial structural elements, 
i.e. the double bond between C2-C3 and the C4 ketonic group.[148]

Flavonoids as SGLT-II inhibitors
Phlorizin or phloridzin, a dihydrochalcone isolated from Malus domestica, 
was the first flavonoid reported to possess antidiabetic potential due to 
its ability to inhibit sodium-dependent glucose transporters I and II. Due 
to its various drawbacks such as poor absorption and gastrointestinal 
disturbances, various analogs were synthesized chemically, keeping Ta
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e 
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Figure 3: Substitution of flavonoids toward antidiabetic activity

Figure 4: Potent substitutions on flavonoids for the inhibition of xanthine 
oxidase

Figure 5: Potent substitutions on flavonoids for the inhibition of xanthine 
oxidase
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phlorizin as a prototype, which was found clinically successful. 
Epigallocatechin, quercetin, apigenin, and myricetin also ameliorate 
hyperglycemia by inhibiting SGLT-I.[149] Later, natural flavonoids with 
selective SGLT-II inhibitory activity were also isolated from methanolic 
extracts of Sophora flavescens, viz., formononetin, sophoraflavanone, and 
kurarinone. The presence of hydroxyl groups at C4’ and C6’ positions of 
ring B and the carbonyl group at the C4 position favors SGLT inhibition. 
Methoxy or hydroxyl groups at the C5 position of ring A, alkyl chain, 

especially lavandulyl at C8, increase the SGLT-I inhibitory action, whereas 
replacement of this alkyl chain by the sugar moiety and substitution of 
the hydroxy group at the C7 position of the ring A increase the selective 
SGLT-II inhibitory activity [Figure 6] as reported previously.[150,151]

Flavonoids as PPAR-γ agonists
Flavonoids, by virtue of their peroxisome proliferator-activated receptor 
(PPAR-γ) agonistic activity, also act as a potent antidiabetic agent. 
They improve glucose homeostasis by escalating glucose transporter 

Figure 6: Flavonoids as SGLT-II inhibitors Figure 7: SAR approach toward flavonoids as PPAR-γ agonists

Table 4: Isoflavonoids with significant antidiabetic potential

Component Plant source Dose/duration/route Model Experimental outcome Reference
Daidzein 7‑hydroxy‑3‑ 
(4‑hydroxyphenyl) 
‑4H‑chromen‑4‑one (C15H10O4; 
254.23 g/mol)

Chenopodium quinoa
Acacia Arabica
Glycine max

100, 200, 400 mg/kg STZ‑induced diabetes Inhibits α‑glucosidase 
activity

[112]

Genistein 5,7‑dihydroxy‑3‑ 
(4‑hydroxyphenyl)‑ 4H‑chromen‑ 
4‑one (C15H10O5; 270.24 g/mol)

Chenopodium quinoa
Glycine max
Butea monopermea

10 nmol/L-5 μmol/L INS‑1 and MIN6 
(insulin‑secreting cell lines) 
and mouse pancreatic islets

Insulinotropic effect due 
to cAMP/PKA signaling 
cascade activation 

[113]

Table 5: Catechins with antidiabetic potential

Component Plant source Dose/duration/route Model Experimental outcome Reference
Catechins 
2‑(3,4‑dihydroxyphenyl)‑ 
4H‑chroman‑3,5,7‑triol
(C15H10O6; 290.26 g/mol)

Camellia sinensis
Elaeagnus umbellate
Bridelia ferruginea
Acacia catechu

20, 40, 80 mg/kg STZ‑induced diabetes Controls oxidative stress [115]
10 mg/kg 

(daily)/21 days/oral
STZ‑induced diabetes Stimulates peripheral glucose 

utilization and enhance glycolysis
[116]

100 mg/kg/14 days/oral STZ‑nicotinamide 
induced diabetes

Increase insulin sensitivity and 
reduce oxidative stress

[117]
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expression (especially GLUT-4) as well as adiponectin, thereby 
enhancing insulin sensitivity.[152,153] SAR studies indicated that ring B 
having a hydroxy group at C3’and C4’ positions is essential for the activity, 
and its replacement with any heterocyclic moiety such as thiazole, 
pyridine, and oxazole, decreases the activity. Esterification of the ketonic 
group at C3 and C4 positions increases the activity; however, ether 
substitution decreases the activity. The presence of a methoxy group at 
C7 and isopentyl group at the C6 position of ring A, along with the double 
bond between C2 and C3 in ring C, also potentiates the PPAR-γ agonistic 
activity [Figure 7].
Using a novel method for regioselective modification of silybin, Zhang 
et al.[154]developed strong PPAR-targeting agonists against diabetes. 
Based on research findings, it was concluded that the presence of an 
esteric moiety such as a lipophilic side chain at C3, C5, and C7 positions 
considered to be significant PPARγ agonists even the substitution by 
aromatic substitution through oxygen linker was also reported to be 
potent.[154]

Flavonoids as a DPP-4 inhibitor
Recently, DPP-4 inhibitors have gained a lot of popularity due to their 
inhibitory action on endogenously released GLP-1 and GIP, leading to 
enhanced insulin and decreased glucagon secretion after meals. Various 
flavonoids such as quercetin, kaempferol, and hypolaetin, act as successful 
DPP-4 inhibitors as a result of catechol or hydroxyl groups present in the 
required configuration on ring B, the double bond between C2 and C3, 
and a keto group at the C4 position [Figure 8].[148,155]

With the aim of exploring the antidiabetic activity of flavonoids, Pan 
et al.[156]elucidated the SAR-based therapeutic efficacy of flavonoids 
with kinetics and interaction mechanism. SAR analysis showed that 
introducing a hydroxyl moiety at C3 and C4’and ketonic at C4 positions of 
flavonoid core structure was reported to be beneficial for increasing their 
inhibitory efficiency against DPP-4.[156]

Flavonoids as insulin secretagogues
Flavonoids, especially anthocyanins, act as insulin secretagogues due to 
the presence of a hydroxyl group in ring B, which increases their ability  
to secrete insulin. The activity further increases with an increase in the 
number of hydroxyl groups in ring B [Figure 9].[157]

Based on considerable evidence, Zhang et al.[158]discovered that 
kaempferol, a plant-derived flavonol acts as an antidiabetic compound 
by enhancing pancreatic β-cell viability and insulin secretory function. 
In context to this, SAR analysis was also performed, which suggested 
that the presence of a hydroxy substitution at C3 and C4’positions with 
ketonic modification at the C4 position was reported to be significant for 
the antidiabetic effect.[158]

Flavonoids as potent glycogen phosphorylase inhibitors (GPIs)
Another promising strategy for attenuating hyperglycemia involves the 
inhibition of glycogen phosphorylase,[159]an enzyme leading to glycogen 
breakdown to glucose-1-phosphate for glycolysis leading to energy 
production.[160] Flavonoids, viz., 6-hydroxyluteolin, rutin, and hypolaetin 
are identified as good inhibitors of enzyme glycogen phosphorylase.[12,161] 
SAR studies [Figure 10] further indicated that the double bond between 
C2 and C3 (C ring), and the presence of hydroxy groups at C3 and C4’ 
positions of the B ring are essential requirements for flavonoids to 
act as effective GPIs. Hydroxylation at the C5 and C7 positions of ring 
A decreases the activity; however, the activity increases if the OH 
group is present at C6 and C8 positions of the ring. Deoxygenation of 
the C3’ position of ring B decreases the activity, further confirming the 
importance of the hydroxy group at the C3’position.[161]

Flavonoids as aldose reductase inhibitors(ARIs)
Aldose reductase inhibitors, by inhibiting glucose breakdown via a 
specific metabolic pathway such as the polyol pathway, mainly prevent the 
development of secondary complications due to diabetes.[162]Flavonoids 
such as kaempferol, hispidulin, and cirsimarin are reported to possess 
an aldose reductase inhibitory effect. The SAR studies [Figure  10] 
suggested that the substitution by a hydroxy group at the C7 position, 
the presence of unsaturation between C2 and C3 positions, and the 
3’,4’-catechol nucleus of ring B imparts strong activity. The hydroxy 
group at C3 and an o-glucosyl moiety at the C7 position, however, 
decrease the activity.[163] Kim et al.[164] isolated a number of phenolic 
compounds from ethanolic extract of Paulownia coreana bark and 
evaluated their significant role as potent aldose reductase inhibitors in 
the treatment of diabetic complications. Furthermore, the investigated 
compounds with the 3’,4’-dihydroxy moiety on their B rings show more 
potent inhibition of aldose reductase in diabetes.[164] The correlation 
between structural requirements and the mode of action of flavonoids 
for antidiabetic effect [Figure 11].

Figure 8: Potent modifications on flavonoids as DPP-4 inhibitors

Figure 9: Effect of substitutions on flavonoids as insulin secretagogues

Figure 10: SAR study of flavonoids as GPI and ARI inhibitors
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CONCLUSION
As with the growing diabetes complications, the continuous emergence 
of toxicity and resistance issues clearly demands an effective therapeutic 
agent. With relevance to polyphenolic compounds, the flavonoid is 
considered a more reliable scaffold with limited toxicity. From the above 
study, it can be concluded that flavonoids possess amazing potential 
to attenuate blood glucose levels in diabetes owing to their diverse 
mechanisms, viz., the ability to suppress oxidative stress, improve 
insulin sensitivity, regulation of various processes such as glycolysis, 
gluconeogenesis, and enzymes such as α-glucosidase, xanthine oxidase, 
and DPP.
Flavonoids from different classes possessing antidiabetic effectiveness 
have been isolated from plants that can be further modified to get 
novel molecules with improved efficacy. Various SAR studies were also 
performed, which concluded that the major structural modifications 
on flavonoids include the presence of unsaturation between C2 and C3 
positions of ring A, and the catechol moiety in rings A and B is considered 
as the significant substitution for maintaining blood glucose level, 
thereby showing a substantial increase in the antidiabetic potential of 
flavonoids. These findings showed the exploration of flavonoids glucose 
SAR as a promising approach for the development of novel antidiabetic 
agents.
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