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ABSTRACT
Background: Tinospora cordifolia  (Willd.) Miers  (T.  cordifolia) is a 
well‑known Indian medicinal plant containing several nonpolar and polar 
constituents that play an important role to mitigate various ailments, 
such as diabetes, urinary disorders, and hepatoprotective. Due to the 
lack of evidence on phytopharmacological relevance to the unpredicted 
nonpolar matrix of T. cordifolia, the present study aimed to evaluate the 
metabolomic pattern of different fractions obtained from aqueous extract of 
T. cordifolia, which has been recommended in AYUSH for various ailments 
including kidney disorders. Materials and Methods: High‑performance 
thin‑layer chromatography and gas chromatography–mass spectrometry 
(GC–MS) analyses were performed on aqueous extracts and hexane, 
dichloromethane, and methanolic fraction of T. cordifolia aqueous extract 
to evaluate fingerprinting and metabolomic profile. Principal components 
and pharmacokinetic analysis were performed using XLSTAT and in‑silico 
SwissADME tool to determine metabolite variability and pharmacokinetic 
relationship based on lipophilicity and drug‑likeness. Further, network 
pharmacology analysis was performed to determine the exact biomolecular 
relationship of T. cordifolia in alleviating kidney disease. Results: The GC–MS 
metabolomics results showed several metabolites in different fractions 
with high variability of phytoconstituents in the methanolic fraction. In 
pharmacokinetics, each metabolite exhibited a direct correlation between 
drug lipophilicity and permeability. Network pharmacological suggested five 
fatty acids, which significantly interacted with the genes such as AGTR1, 
ATG, RELA, NOS3, NOS2, REN, INS, IL6, TNF, MAPK1, and CASP3, which 
could potentially regulate various pathophysiological conditions, such as 
hypertension, insulin resistance, oxidative and inflammatory stress, and 
electrolyte homeostasis, thereby strengthening the normal function of the 
kidney. Conclusion: The study showed that six metabolites of T. cordifolia 
play a multimechanistic role in alleviating kidney disease.
Key words: Fatty acids, GC–MS, metabolomics, network pharmacology, 
Tinospora cordifolia (Willd.) Miers

SUMMARY
•  Since history, medicinal plants are contributing an immense role in 

the alleviation of several acute and chronic ailments due to their multi‑
mechanistic and therapeutic effect. Among thousands of traditionally reported 
medicinal plants, T. cordifolia is a well‑known Indian traditional medicinal 
plant used for several ailments including kidney diseases. Due to a lack of 
phytopharmacological and molecular‑based evidences of T cordifolia in the 

alleviation of kidney disease, the study aimed to explore metabolomics pattern 
and their biological significance in kidney disease. The metabolomic study was 
conducted through GC‑MS analysis while network pharmacology analysis 
was conducted to explore the multi‑mechanistic and therapeutic effect of T. 
cordifolia in the alleviation of kidney disease and its associated complications. 
the results showed that the metabolites such as fatty acids, terpenes, 
monoterpenes, monoterpenoid aldehyde, phenylpropanoid, anthracene, 
organics acids, etc were found as major metabolites of T. cordifolia. Network 
pharmacology analysis showed that fatty acids (oleic acid, linoleic acid, lauric 
acid, methyl palmitate, etc.) and phenylpropanoid (cinnamaldehyde) exhibited 
a significant effect in the alleviation of kidney disease via regulation of the 
genes involved in its pathophysiology such as oxidative stress, inflammatory 
stress, vascular rigidity, apoptosis, positive regulation cell death, etc. Hence, it 
can be demonstrated that the aforementioned metabolites of T. cordifolia can 
be the best leads for alleviating kidney disease and associated complications. 

Abbreviations used: MS: mass spectrometry, NMR: nuclear magnetic 
resonance, HPTLC: high‑performance thin‑layer chromatography, 
GC–MS: gas chromatography–mass spectrometry, TM: traditional 
medicine, PCA: principal component analysis, HCA: hierarchical cluster 
analysis, TPSA: topological polar surface area, GO: gene ontology, 
PPI: protein–protein interaction, MCA: multiple correspondence analysis, 
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INTRODUCTION
Metabolomics is a comprehensive analytical technique for the quality 
assessment of targeted or untargeted metabolites in a biological system.[1] 
Metabolomic studies have been concomitant with many research fields, 
including functional genomics, environmental and biological stress 
studies, integrative systems, and biology biomarker discovery.[2,3] 
Besides, such analytical studies are gaining exponential growth in the 
field of quality control analysis of phytoconstituents diversity present 
in medicinal plants.[4] Medicinal plants are typically composed of a 
complex mixture of different varieties of phytoconstituents, such as fatty 
acids, carotenoids, steroids, terpenoids, alkaloids, phenols, flavonoids, 
and glycosides. However, it still remains a challenge to validate herbal 
medicine or products based on their quality, safety, and regulatory 
aspects.[3‑6] Although, the most common analytical techniques such 
as chromatography, mass spectrometry  (MS), and nuclear magnetic 
resonance (NMR) are used abundantly in quantitative and quantitative 
estimation of plant metabolites. Having said that, these techniques 
are the main object of choice which are greatly hyphenated with plant 
phytoconstituents profiling or metabolomics studies due to their high 
sensitivity and accuracy when coupled to influential chromatographic 
techniques [e.g., high‑performance thin‑layer chromatography (HPTLC), 
gas chromatography–mass spectrometry  (GC–MS), capillary 
electrophoresis–mass spectrometry, and liquid chromatography–mass 
spectrometry] that allows the separation and characterization of the 
nonpolar and polar metabolites present in the medicinal plants.[7,8]

Furthermore, GC–MS is one of the advanced and the first choice of 
techniques due to its high selectivity, sensitivity, and enables extensive 
detection of nonpolar metabolites within a sample. It makes us far 
formalized to characterize a comprehensive matrix of metabolite or 
their accretion patterns without having liabilities on authentic reference 
compounds and or isolation of the individual metabolites. The structural 
assignment process generally depends on the reference database search 
to interpret for MS and MS–MS data. Moreover, unknown metabolite 
characterization is a little challenging, since these cannot be consigned 
to a reference database. Further, the fragmentation pattern–parent ions–
daughter ions are the unique parameter in GC–MS–MS‑based plant 
metabolomics which allows us  far formalized  for characterization of the 
targeted and untargeted metabolites based on m/z values and reference 
database.[9]

For authentication, the m/z values of metabolites are matched with the 
reference data of mass banks where the analysis is resumed under the 
defined tolerance of m/z values variability.[10] The MS data acquisition 
analysis depends on the probability score between query and reference 
data search. For the untargeted metabolites, the data acquisition 
tolerance can be both in m/z value and chromatographic retention time, 
and these implications are further accustomed across measurements by 
using alignment software.[11] Advanced web‑based platform analyses 
have been established based on automated workflows from processing 
to peak alignment of row data, annotations, statistical analysis tools to 

enable easy access for a broad range of investigators, and informatics 
expertise.[12]

In the advent of the gradual rise of interdisciplinary subjects concerning 
bioinformatics and computational biology, researchers are being more 
prompted or have shifted for traditional medicine research from a 
single‑mode to multi‑faceted and dimensionalized systematic research 
mode. To understand the mechanisms of drug action are the significant 
changes from the perspective of the biomolecular network associated 
with the gene’s role in disease regulation. The “network computational 
biology” aimed to regain or bring significant changes and resolve new 
challenges associated with the preliminary screening of the drugs.[13]

The network target represents unique concepts that characterize the 
biological network of therapeutic target underlying diseases and 
decipher systematic mechanisms of action for single multitargeted 
drugs, predominantly used for traditional medicine. Thus, the theory 
“network prediction of target” has been acknowledged as the core theory 
of network pharmacology.[14]

Traditional medicine  (TM), characterized by personalized, 
multicomponent, and holistic therapy, grasps big potential to 
conceptualize various challenges in the system of modern health care. 
By producing an unprecedented prospect of TM for systematic research, 
network pharmacology is progressing as a systematic paradigm or even 
becoming a frontier research field of drug discovery and development.[15] 
The systematic perspective of network pharmacology is emphasized 
to reveal the systematic mechanisms of drug pharmacology and 
further implemented for the drug discovery and development or 
clinical treatment. Network pharmacology assimilates computational, 
experimental, and clinical investigation and generates promising aspects 
to explore the characteristics of TM and their further association with 
the frontiers of modern science and technology.[14]

T.  cordifolia is a traditional Indian medicinal plant used for various 
ailments or chronic disorders in form of aqueous decoction. It has been 
part of various traditional formulations of AYUSH which are being used 
for centuries to cure urinary disorder/increased frequency and turbidity 
of urine, diabetes  (API, Part‑I, Vol‑I, 41), and diuretic  (UPI, Part‑I, 
Vol‑I,).[16]

Due to metabolite complexity, namely, fatty acids, steroids, terpenoids, 
alkaloids, and polyphenols, T.  cordifolia is assisted in the regulation 
of chronic kidney malfunction via exertion of multidimensionality 
potential as antidiabetic and hypoglycemic activity, anti‑inflammatory 
activity, anticancer activity, and immunomodulatory activity.[17,18] 
Although, no specific phytopharmacological evidence on T. cordifolia is 
still available which tends to identify an unknown nonpolar matrix of 
the phytoconstituents extracted with polar systems and establish based 
on their metabolic patterns and pharmacology related to kidney and 
associated diseases.
Several studies have been conducted on individual plant matrix of 
metabolites based on GC–MS and revealed the diversity of metabolites, 
such as lipid‑related compounds, steroids, and organic acids, as well as 
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structurally diverse phytohormones. Further, the correlation of derived 
metabolites and target biological assessment has a vast consideration in 
the screening of the metabolites based on their biological interaction.[19]

Taking all these facts into consideration, the present study aimed to 
evaluate the comparative evaluation of the metabolomic pattern of 
different fractions obtained from T. cordifolia, and in‑silico computational 
studies were performed to investigate the mechanism of screened 
constituents‑based on network pharmacology hyphenated compound 
or protein–protein interaction (PPI) for nourishing kidney malfunction.

MATERIALS AND METHODS
Chemicals and reagents
The analytical‑grade solvents such as n‑hexane, dichloromethane, 
methanol, and distilled water used for sample preparation and GC–MS 
analysis were purchased from SD Fine‑chem Limited, Mumbai.

Preparation of extract
Dried stem of T. cordifolia was provided as a gift sample to the bioactive 
natural product laboratory (BNPL) from AIMIL Pharmaceuticals (India) 
Ltd, Saini Majra, Ropar Nalagarh Rd, Tehsil Nalagarh, Solan District, 
H. P  174101, India, which was collected from Nalagarh district 
Solan, Himachal Pradesh, India and authenticated as per Ayurvedic 
Pharmacopoeia of India  (API, Part‑I, Vol‑I, pg‑53). The voucher 
specimen of each vendor was submitted to BNPL with voucher number 
BNPL/JH/Ph.D/11/19/04, BNPL/JH/Ph.D/11/19/05, and BNPL/JH/
Ph.D/11/19/06. In brief, 100  g of the dried stem of T.  cordifolia from 
each vendor was coarsely powdered using a grinder and soaked in 
700  ml of distilled water overnight in three different round bottom 
flasks. Thereafter, the extraction process was performed using the reflux 
method at 60°C temperature for 8  hr. The extracts were filtered using 
a muslin cloth and WhatmanTM filter paper  (Qualitative, 90  mm; Cat 
No  1001090) and concentrated on a water bath at 60°C to get dried 
residue. The yields of extracts were calculated and stored in an air‑tight 
container for further use.[20]

HPTLC profiling
HPTLC profiling of each aqueous extract of T. cordifolia was performed 
using the standard protocol with some modification in chromatographic 
condition while the instrument and instrumentation condition remained 
the same as followed in the protocol.[7] In brief, 30 mg of aqueous extract 
of each sample was dissolved in 1  ml of methanol followed by vortex 
and centrifugation for 10 min. The supernatant was collected for HPTLC 
analysis while toluene, ethyl acetate, and formic acid  (5:  4: 1, v/v/v) 
were used as mobile phase to develop TLC plate (size 10 × 5 cm) in a 
presaturated TLC development chamber. After the development of TLC 
plate, fingerprinting analysis was performed at 254 nm.

Preparation of sample for GC–MS analysis
The aqueous extracts of different vendors as prepared in Section 2.2 
were pooled in 1:1:1 ratio  (w/w) and used for successive extraction/
fractionation using hexane, dichloromethane  (DCM), and methanol 
as extracting solvents. In brief, 60  mg of sample was taken in 1.5  ml 
Eppendorf ’s tube and directly dispersed in hexane, DCM, and methanol. 
Then, 1  ml of each solvent was added into Eppendorf ’s tube followed 
by vortex and centrifugation for repeated 10  min after completion of 
successive extraction with one solvent. Thus, all three fractions were 
obtained from mixed samples of T.  cordifolia aqueous extract and 
processed for GC–MS metabolomic analysis in triplicate after filtering 
through a 0.2 μM polytetrafluoroethylene membrane filter.

GC–MS Metabolomics analysis
The study was performed on a GC–MS instrument  (Agilent 7890A, 
Agilent Technologies, United States) equipped CTC‑PAL autosampler 
associated with a mass spectrophotometer detector (Agilent 5975C inert 
XL EI/CI MSD with Triple‑Axis Detector, Agilent Technologies, United 
States). In brief, 2.0 μL of each prepared sample was injected with a 
10:1 split ratio onto a 30 m × 0.25 mm × 0.25 μm HP‑5MS column (5% 
diphenyl, 95% dimethyl polysiloxane, Agilent Technologies, United 
States). The oven temperature was set at 50°C initially for 1  min and 
further gradually increased up to 150°C at 5°C/min, and the temperature 
was held for 1 min. Then, it was ramped to 310°C at 10°C/min; 310°C 
was maintained for 5  min. The total run time of the sample run was 
41  min. The chromatographic separation was done using high pure 
helium (99.999%) as carrier gas at a constant flow rate of 1 mL/min. The 
injection port, transfer line, and ion source temperatures were all set 
at 250°C while 70 eV of EI was adopted, and the mass scanning range 
was set from 50 to 700 amu in full scan. Solvent interruption time was 
adjusted at 3  min for all samples generated by different methods. To 
process chromatographic and spectral data, MSD ChemStation software 
was used. The metabolites separated through GC–MS were identified 
by comparing the obtained mass spectra of the analytes with those of 
authentic standards from the NIST libraries  (2005) and with the mass 
spectra published previously.[9] The analysis of each sample was done in 
triplicate (n = 3).

Data processing based on metabolites pattern 
obtained from the different fractions of T. cordifolia 
aqueous extract
The metabolites identified from GC–MS analysis were formatted as per the 
presence (value 1) or absence (value 0) of metabolite in different fractions 
of mixed samples. The formatted data were further analyzed by the 
XLSTAT2021.lnk trial version for principal component analysis (PCA) 
and multivariate data analysis. The Extended Statistics module of the 
XLSTAT software was used to implement multivariate statistical analysis 
for the data obtained by GC–MS profiling of different fractions of 
T. cordifolia aqueous extracts. Partial least squares discriminate analysis 
with Pareto scaling was used to evaluate comparative metabolites 
variability and identify metabolite variables that are responsible for 
potential metabolites among different samples. Further, the metabolites 
network/matrix was evaluated between three successive fractions and 
their identified metabolite content. To determine the distance between 
different generated clusters of each fraction metabolites, the Ward 
distance algorithm was used to calculate through hierarchical cluster 
analysis (HCA). Using the PCA‑to‑HCA, 40 metabolomic tree diagrams 
were created, and the corresponding bootstrap values were calculated to 
interpret the PCA clustering pattern.[21]

ADME analysis
ADME computational analysis was performed for each metabolite 
identified in different fractions of T.  cordifolia mix sample through 
“SwissADME (http://www.swissadme.ch/index.php).” Topological polar 
surface area  (TPSA) for drug integrity, consensus log Po/w for drug 
lipophilicity, log Kp (skin permeation), and drug‑likeness were predicted 
as the standard parameters for their bioavailable or ADME response, 
and to determine the relationship of ADME analysis between each 
parameter.[22]

Gene ontology and network pharmacology analysis
Genes involved in kidney and associated disorders were selected from 
Genecard  (https://www.genecards.org/) and UniPort database  (https://
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www.uniprot.org/uploadlists/) with their UniPort ID.[23] Gene 
ontology  (GO) analysis through Metascape  (metascape.org) tool was 
performed to evaluate multiple physiological roles of each gene in the 
regulation of kidney and associated disorders after the analysis of the 
compound‑disease common target. A  PPI and compound–proteins 
interaction network was constructed and integrated using STRING 
platform (https://string‑db.org/) and Cytoscape (version 3.8.2) software. 
The analysis covered all the nearly functional interactions among the 
expressed proteins–proteins and compound–proteins.

RESULTS AND DISCUSSION
The extraction process of three different vendors of T.  cordifolia using 
distilled water was done successfully. The average extractive yield of 
aqueous extract was found to be 13.74% ± 1.632%, which was within 
the limit of India’s Ayurvedic pharmacopeia (API, Part‑I, Vol‑I, p‑65). 
After the successful extraction of T. cordifolia aqueous extracts, HPTLC 
analysis was performed to determine the variability among samples, 
if any. Thereafter, GC–MS analysis was performed on hexane, DCM, 
and methanol fractions in triplicate, which was obtained by successive 
extraction from pooled samples of aqueous extracts.

HPTLC analysis
HPTLC analysis of each aqueous extract of T. cordifolia was performed 
to determine the variability among samples. The fingerprinting analysis 
showed several major and minor metabolites in each extract of T. cordifolia 
at different Rf scale: 0.076, 0.123, 0.171, 0.219, 0.276, 0.352, 0.380, 0.457, 
0.504, 0.742, 0.780, and 0.819 for TCS1; 0.075, 0.123, 0.170, 0.217, 0.274, 
0.350, 0.378, 0.455, 0.502, 0.741, 0.780, and 0.818 for TCS2; and 0.075, 
0.123, 0.170, 0.218, 0.274, 0.351, 0.380, 0.455, 0.504, 0.741, 0.780, and 
0.819 for TCS3. The resulted data showed no significant differences in 
the number of metabolites and their respective peak intensity in aqueous 
extract of tested vendors of T.  cordifolia. Considering these facts, the 
HPTLC analysis of different vendors of T.  cordifolia can be assessed 
potentially in quality‑based standardization of its herbal medicine or 
products.[24] Since no significant differences were observed in intensities 
of peaks commonly present at different Rf, it was decided to pool the 
samples in 1:1:1 ratio (w/w/w) for further analysis.

GC–MS analysis
The comparative metabolomic analysis of each fraction obtained 
from mixed extracts of T.  cordifolia from different vendors was done 

Table 1: Phytochemical screening from different fractions of T. cordifolia using GC–MS analysis

Identified Compound Molecular Weight Retention Time (Rt) Hexane Fraction DCM Fraction Methanolic Fraction
(14β)‑Pregnane 288.5 26.437 + − +
2 (1H)‑Naphthalenone 152.23 12.291 + − −
6‑Aza‑5,7,12,14‑Tetrathiapentacene 355.5 9.083 − − +
6‑Methyloctahydrocoumarin 168.23 13.352 + − −
7‑Pentadecyne 208.38 23.932 − + −
Anisole 108.14 13.954 + + −
Anthracene 178.23 18.727 + − −
Artonin L Monomethyl Ether 272.25 30.295 − − +
Bisphenol A 228.29 27.696 + − +
Camphene 136.24 10.665 − − +
Capric Acid 172.26 6.008 − − +
Cinnamaldehyde 132.16 11.86 − − +
Citronellal 154.25 19.100 − + −
Curcumene 368.38 14.582 − − +
Cyercene 4 262.34 22.710 − − +
D‑Allose 180.15 6.404 − − +
Diethyl Phthalate 222.24 15.995 + + +
Docosane 310.60 20.411 − − +
Eicosene 280.53 21.589 + + +
Erucic Acid 338.57 30.888 − − +
Ethyl Caprylate 172.26 10.467 + − +
Eugenol 164.27 13.045 − − +
Fukinanolid 234.33 22.702 − − +
Fulvic acids 308.24 6.118 + − −
Fumaric Acid 116.07 13.264 + + −
Heneicosanoic Acid 326.56 9.472 + + +
Lauric Acid 200.31 6.118 − − +
Linoleic Acid 280.44 24.306 + + +
Methyl Linoleate 294.53 28.889 + + +
Methyl Palmitate 270.45 20.564 + − +
Morpholine 87.1 5.503 − + +
Myristylaldehyde 212.37 14.648 + − −
Oleic Acid 282.47 26.656 + + +
Palmitic Acid 256.4 20.557 + − +
Phthalic Acid 166.14 19.627 + + +
Vaccenic Acid 282.46 26.627 + + +
Valencene 204.35 14.897 − + −
Vibrindole A 260.33 21.194 − − +
Vitamin E 260.33 31.562 + − +
Zingiberene 204.18 14.736 − − +
Total metabolites 20 14 30
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successively using the GC–MS instrument  (Agilent 7890A, Agilent 
Technologies, United States). In GC–MS analysis, 40 metabolites 
were identified in the entire fractions. Meanwhile, 20 metabolites 
were identified in hexane fraction, 13 in DCM fraction, and 31 in the 
methanolic fraction of T.  cordifolia aqueous extract. The compounds 
which were not of choice were removed during the processes of 

data acquisition. The screened metabolites were lipids/fatty acids, 
anthracenes, terpenes  (monoterpenes and/or sesquiterpene), steroids, 
phenols, and alkaloids. The previous findings strongly support our 
findings.[16,25] In the analysis, some of the common metabolites were 
identified in each fraction and the principal metabolites matrix 
evaluations were done by comparative metabolites variability and 

c

b

a

Figure  1: GC–MS chromatogram of different samples.  (a) Represents the chromatogram of hexane fraction.  (b) Represents the chromatogram of DCM 
fraction. (c) Represents the chromatogram of methanolic fraction obtained from T. cordifolia aqueous extract
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identify metabolite variables analysis which acknowledges the potential 
metabolites in each fractionated matrix of T. cordifolia aqueous extract. 
The identified metabolites in each fraction of T.  cordifolia aqueous 
extract are summarized in Table 1 with their respective chromatograms 
presented in Figure 1.

Data processing based on metabolites pattern 
obtained from the different fractions of T. cordifolia 
aqueous extract
PCA was performed to identify the major differentiating metabolites 
present in different fractions of aqueous extract of T.  cordifolia. 
Metabolites identified from GC associated with EI–CI MSD with 
triple‑axis were matched with the authentic standards from the 
NIST libraries of metabolites. The data were formatted as per the 
presence (value 1) or absence (value 0) of metabolite in different fractions 
of T.  cordifolia aqueous extract  [Table  1]. PCA was performed among 
the assigned 40 metabolites converted to two main components on the 
x‑axis  (PC1) and y‑axis  (PC2). The statistical values were optimized 
and set at the significance level alpha = 0.05 for the PCA. Correlation 
matrix [Pearson (n)] and Eigenvalues of covariance were determined to 
represent matrix “core,” directions of the new feature space, and their 
magnitude of the PCA. Generally, PCA is used to determine the general 
interrelation among the metabolite patterns of different fractions of plant 
matrix.[21] We specifically presented a deep analysis by the different ways 
for investigating the analytical data of major abundant and principal 

metabolites which differentiate each fraction of T.  cordifolia aqueous 
extract. The statistical analysis revealed each centering and scaling variable 
to unit variance. The cumulative percentage variability of F1  (hexane 
fraction), F2 (DCM fraction), and F3 (methanolic fraction) components 
were 50.795%, 28.667%, and 20.538%, respectively. Further, the most 
prominent clustering in the square graph postulates that the fraction 
analysis of T.  cordifolia aqueous extract merely had high dissimilarity 
among the metabolites of each fraction. The active variable PCA biplot 
axis graph showed hexane and DCM fraction with less dissimilarity of 
metabolites than a methanolic fraction. The contribution of the variables 
represents the highly contributed variables in the PCA and can be 
measured to determine the variables which are intensely influencing a 
particular PC. Additionally, when inferring the squared cosine between 
the variables and the PC, real correlations exist can be determined for 
their apparent relation.[26] The analysis reveals that the contribution and 
squared cosines of the variables are proportionated together with high 
contribution variability 51.67% by the F3 variables while 0.611 and 0.590 
squared cosines for F1 and F2 variables with 0.676 squared cosines for 
F3 variable showed the largest squared cosine. Due to high variables and 
dissimilarity of metabolites in methanolic fraction, high contribution 
percent variability and squared cosines were determined. Further, in 
correlation analysis of eigenvalue, variability (%), and cumulative %, it has 
been observed that percentage variability is irreversibly proportionated 
to the cumulative % of the variables which depends on the dissimilarity 
of metabolite among each variable. In F3, the large set of metabolites 
variability can differentiate another’s components, while F2 has the same 

d

cba

e

Figure  2: Representation of PCA.  (a) Represents the squire plot of PCA; the samples in the same quadrant have similar metabolite patterns while the 
sample appeared in different quadrant has different metabolites pattern.  (b) Represents Biplot of variables based on metabolite variation and showing 
active variables and observations corresponding to active observations, while (c) represents a symmetric plot of MCA that showed correlative pattern of 
metabolites with respect to each variable. In the dissimilarity index of agglomerative hierarchical clustering analysis of different variables, (d) represents the 
node variability bar graph, while (e) represents the dendrogram clustering targets of metabolites variability
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correlation matrix considered as F1even no differentiation was observed 
in the eigenvalue for both the components. Based on this observation, 
PC1 acknowledged the correlation analysis for another component.
In multiple correspondence analysis (MCA), it has been observed that 
the samples that fall in the same compartment have similar metabolites 
patterns while the degree of rotation of active observations concerning 
the corresponding compartment is characterized by the different levels 
of variability. In symmetric plot analysis (axes F1 and F2: 77.87%), the 
observation revealed that hexane and DCM fraction metabolites have 
almost the same metabolites pattern while the large difference was 
observed in the F3 variable. Square variable plot and biplot for active 
variable and observation represented for PCA while symmetric plot 
represented for MCA is shown in Figure 2.
Besides the representation of data based on dissimilarity, is one of 
the simple statistical analytical methods with high applicability on 
various data sets. Dissimilarity index agglomerative hierarchical 
clustering  (AHC) analysis was performed to determine relatively 
homogeneous clusters of a data set based on their characteristics 
measured in each variable. The output of dissimilarity dendrogram 
statistical analysis of GC–MS data is depicted with the four clusters 
of the data set. The first right cluster of metabolites showed the 
dissimilarity index of metabolites from hexane fraction, the second 
cluster showed for DCM fraction, the third‑largest cluster showed for 
the common metabolites for hexane and methanolic fraction, while the 
remaining one set of the cluster showed for the common metabolites for 
each variable. Dissimilarity index AHC analysis node and dendrogram 
plot are shown in Figure 2.

ADME analysis
ADME profiling of identified metabolites from subfractions of mix 
T. cordifolia extract was determined based on TPSA, lipophilicity, 
permeability, and drug‑likeness parameters. The comparative analysis 
of each corresponding parameter to determine the relationship of 
metabolites in the ADME process revealed that the molecules that have 
high TPSA value showed less permeability or even to the blood–brain 
barrier (BBB). Besides, those molecules having low TPSA value showed 
high permeability to the skin and BBB. The statistical representation of 
correlation analysis between consensus log P and log Kp (cm/s) revealed 
that the permeability of each metabolite is directly proportional to 
the lipophilicity of metabolites. The correlation coefficient was found 
to be 0.9483, 0.9802, and 0.9656 for hexane, DCM, and methanolic 
subfraction metabolites ADME parameters. Further, the correlation 
analysis was performed between TPSA and other parameters, the 
statistical analysis suggested no significant correlation of TPSA to 
consensus log P and log Kp (cm/s). It can be suggested that molecular 
integrity and permeability do not correlate with TPSA to predict the 
ability for permeation into BBB. The generated computational in‑silico 
data and correlation plot of all the subfraction/metabolites for ADME 
applicability are shown in Figure 3 and the results of ADME analysis 
of each metabolite identified in different fractions are summarized in 
supplementary files named ADME_HF for identified metabolites in 
hexane fraction, ADME_DCMF for identified metabolites in DCM 
fraction, and ADME_MF for identified metabolites in methanolic 
fraction.

c

b
a

Figure 3: ADME analysis of each metabolite of different fraction. (a) Represents boiled egg plot for pharmacokinetics of hexane fraction metabolites. (b) 
Represents boiled egg plot for pharmacokinetics of DCM fraction metabolites, while  (c) represents boiled egg plot for pharmacokinetics of methanolic 
fraction metabolites. Further correlation analysis was performed on lipophilicity and permeability strength of each metabolite, and the results were 
represented graphically in terms of log Kp (cm/s) and consensus log P. (A’) Represents the relationship among hexane fraction metabolites, (B’) for DCM 
fraction, and (C’) for methanolic fraction
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Gene ontology and network pharmacology analysis
In this analysis, a set of 100 target genes were selected from different gene 
databases. The selection of each target gene was constrained to kidney and 
associated diseases only. The target genes which had less even no significant 
interaction  with metabolites were excluded during the integration analysis. 
The set of 93 genes is summarized.

Common target network (protein-protein 
interaction)
In this analysis, ninety‑three putative target genes were found 
interconnecting each other. A  PPI network was constructed using 
STRING database with a medium confidence score of 0.400. The 
established network embodied 93 nodes, 1006 edges, 21.4 average nodes 
of degree, and 0.599 average coefficients of local clustering. Besides, the 
established protein–protein network has significantly more interactions 
than expected. The significant interaction of each protein–target gene 
is based on proteins of similar size selected from the genome database 
and characterized that the proteins are at least partially biologically 
connected to each other during kidney dysfunction or associated factors. 
The edges characterize the interaction between sets of potential targets, 
while the nodes characterize the targets [Figure 4].
Further, the target genes were analyzed for gene ontology through 
Metascape Gene Analysis (metascape.org) and gene‑disease association 
through network analysts to evaluate the multiple physiological roles 

of each gene in the regulation of kidney and associated disorders. 
Out of 96 genes, the top 20 results were selected which were directly 
interrelated with the pathophysiology of the kidney. The observation of 
enriched terms across input gene and enrichment analysis in DisGeNET 
revealed that many targeted genes play a vital role in managing kidney 
and associated disease via preventing renal insufficiency, reactive 
oxygen species, diabetic nephropathy, hypertension/vascular disease, 
and inflammation and various apoptotic pathways.[23] The bar graph 
of enriched terms across input gene lists, colored by P  values and the 
summary of enrichment analysis in DisGeNET and gene‑disease 
association network is summarized in Figure 4.

Network construction for active components 
common targets
In the network establishment analysis of compound and disease common 
targets, 40 metabolites obtained from GC–MS analysis of each fraction 
of T.  cordifolia were analyzed based on their significant interaction 
with the target gene. A  compound‑disease common target network 
was established using Cytoscape 3.8.2 and analyzed or interpreted for 
their significant interaction. The screening of potential metabolites 
was done based on the degree of interaction, interacted nodes, and 
number of interrelated edges with neighbor nodes. The metabolites 
which had no interaction with the target gene/node were deleted 
during interpretation analysis of the network. The observation revealed 

b

a

Figure  4: GO analysis of target genes.  (1) Common network establishment of protein–protein interaction.  (2a) Represents GO analysis of target genes 
which represents a bar graph of enriched terms across input gene lists and colored by P values, while (2b) represents summary of enrichment analysis in 
DisGeNET. (3) Represents the gene-disease association of targeted genes
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that out of 40 metabolites, only six metabolites were identified as four 
fatty acids, namely, oleic acid, lauric acid, palmitate, linoleic acid, one 
aldehyde; cinnamaldehyde and vitamin E  have significant interaction 
with each target used in analysis which may suggest their strong 
biological connection in management of kidney and associated disorders 
[Figures  5 and 6]. During interpretation analysis, oleic acid showed 
interaction with 25 genes, such as UCP2, AGTR1, PPARG, HTR2A, 
CASP3, PIK3CA, TNF, BCL2, and FABP2, which could play a pivotal role 
in the regulation of arterial blood pressure, ion transportation/calcium 
homeostasis, management of diabetes and diabetic nephropathy, tumor 
suppression (bladder tumor), and oxidative modification. TNF signaling 
is well acknowledged with inflammatory cytokine associated with 
renal injury. TNF‑α, NF‑κB triggers the activation and transcription 

of ICAM‑1, IL‑6, and IL‑8, which results in endothelial inflammatory 
and acceleration of renal pathogenesis.[27,28] Oleic acid nitration is 
facilitated for regulation of many reactive nitrogen oxides such as the 
nitrogen dioxide radical and demonstrated benefits in hypertension, 
hyperglycemia in diabetes, obesity with the metabolic syndrome, and 
vascular neointimal proliferation and turns the nonselective activation 
of PPAR, which may in part account for OA‑NO2’s biological effects. 
Further, it has been reported that oleic acid acts as a strong candidate 
against inflammation via the prosurvival nrf2‑signaling pathway.[29,30] In 
a report of Perdomo et al.,[31] Oleate reduces pro‑inflammatory cytokines 
induced eNOS expression, impaired the proliferation induced by TNF‑α, 
angiotensin II and the apoptosis induced by TNF‑α or thapsigargin in 
endothelial cells (ECs) and vascular smooth muscle cells (VSMCs).

d

c

b

f

a

e

a’

Figure  5: Network pharmacological analysis of potential metabolites with target genes.  (a) Represents enrichment gene interaction of oleic acid. 
(b) Represents enrichment gene interaction of lauric acid. (c) Represents enrichment gene interaction of methyl palmitate. (d) Represents enrichment gene 
interaction of linoleic acid. (e) Represents enrichment gene interaction of cinnamaldehyde. (f ) Represents enrichment gene interaction of vitamin E, while 
the figure embedded in the center represents common target interaction of each metabolites
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Lauric acid showed 11 interrelated edges genes, such as PTAFR, ALB, 
HNF4A, and PIK3CA, who regulate colloidal osmotic pressure of 
blood, smooth muscle contractile and hypotensive activity, vascular 
development, resistance to apoptosis, and tumor angiogenesis. Further, 
it strongly regulates blood pressure and increases sodium retention by 
the kidney. Moreover, HNF4A plays a critical role in proximal tubule 
development and is responsible for mechanistic insight into the etiology 
of Fanconi renotubular syndrome with major symptoms such as excess 
excretion of glucose, water, phosphate through urination, polyuria, 
polydipsia, glycosuria, and phosphaturia.[32]

Phosphatidylinositol 4,5‑bisphosphate 3‑kinase catalytic subunit 
alpha isoform of phosphoinositide‑3‑kinase  (PI3K) protein member 
families are well‑known regulators of proliferative signals. It activates 
AKT/PKB and mammalian target of rapamycin  (mTOR) pathways 
by the generation of lipid second messengers. The variations in the 
proliferative signals lead to overgrowth disorders and polycystic kidney 
disease through alterations in PI3K enzymes at different signaling 
cascades.[33] In diabetes, increase evidence of proteinuria  ≥300  mg/
day, vascular injury, hypertension, and significant glomerular 
damage are the sensitive and early indicators of tubule damage due 
to diabetes‑induced oxidative and inflammatory stress by altering 
the function of genes such as INS, TNF, IL6, MAPK1, mTOR, and 
NOS3.[34–36] The renin‑angiotensin system  (RAS) or associated genes 
such as AGTR1 and AGT play an essential role in the management 
of kidney malfunction. If the RAS is overactive, it promotes arterial 
constriction, resulting in an increase in blood pressure, electrolyte 
disbalance, and decrease in renal function.[37,38] Our findings suggest 
that the methyl palmitate, linoleic acid, and cinnamaldehyde have 
significant interaction with the defined target gene and can be a key 
regulator against the deleterious effect of vascular distortion, oxidative, 
and inflammatory stress.
Cinnamaldehyde is a phenylpropanoid phytoconstituents reported for 
reno‑protective action via attenuation of oxidative and inflammatory 
stress.[39] In the cited study, it has been reported that cinnamaldehyde 
acts as a key regulator for interleukin’s, TNF’s, and p38 mitogen‑activated 
protein kinase (MAPK), thereby improving signaling pathways involved 
in inflammations or even apoptosis.[40] It has further been documented 
to inhibit lipid peroxidation induced TLR‑4 dimerization by cysteine 
residues modification into PI3K and phosphoinositide‑dependent 

kinase‑1 (PDK‑1) and regulate upstream monocyte/macrophage‑mediated 
immune responses via NF‑κB signaling.
In a recent study, it was emphasized that vitamin deficiency leads serious 
harm to the kidney and is progressive to end‑stage renal disease (ESRD). 
Moreover, cardiovascular risk in patients with mild‑to‑moderate renal 
insufficiency may lead to high morbidity and mortality. Vitamin E is a 
fat‑soluble vitamin with potent antioxidants with anti‑inflammatory 
properties, it predominantly hinders lipid peroxidation that occurs in 
the cell membrane and suppresses free radicals‑induced inflammatory 
stress.[41]

In a recent study, vitamin E, its molecular mechanisms and signaling 
pathways linked to malignancy modulated by its vitamers and 
inflammation. Preclinical reports emphasized a myriad of cellular effects 
via modulation in pro‑inflammatory molecules and oxidative stress 
response, thus inhibiting the NF‑κB pathway, regulating cell cycle, and 
apoptosis. Furthermore, it regulates various molecular effects including 
enzyme activity and signaling pathways, such as SOD, CAT, GPx, MAPK, 
PI3K/Akt/mTOR, JAK/STAT, and NF‑κB, acting as the underlying 
mechanisms of their reported antioxidant and anti‑inflammatory 
effects. In clinical settings, it has been proven that vitamin E potentially 
improves redox and inflammatory status in healthy, diabetic, and 
metabolic syndrome subjects.[42]

Therefore, the results of network pharmacological analyses not only 
validate the screened targets but also represent the fatty acids whether 
isolated from any sources have a significant therapeutic role in the 
kidney or associated disease by regulating several pathophysiological 
pathways, including hypertension, oxidative/inflammatory stress, insulin 
resistance, apoptosis, and other pathways with unclear mechanisms. 
The significant interaction of each target with fatty acids will provide a 
novel methodology for further assessment of a therapeutic/mechanical 
approach to alleviating kidney disease.

CONCLUSION
The study found that T.  cordifolia aqueous extract possesses several 
major and minor nonpolar metabolites identified by GC–MS analysis. 
PCA statistical analysis reveals the high variability among each variable 
especially in methanolic fraction with a large difference in eigenvalue 
than other variables. Further, based on network pharmacology analysis, 
it was investigated that four fatty acids such as oleic acid, lauric acid, 
palmitate, linoleic acid, one aldehyde; cinnamaldehyde, and vitamin 
E have significant interaction with the targets associated with kidney 
disorders. The analysis can enlighten the role of screened fatty acids 
and other metabolites in treating kidney disease and related disorders 
via ameliorating hypertension, oxidative/inflammatory stress, insulin 
resistance, and apoptosis kind of pathophysiological conditions. Besides, 
the generated evidence can be the best source to explore the therapeutic 
or mechanistic approaches for T.  cordifolia to alleviate chronic kidney 
disease, practically.
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