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ABSTRACT
Background: In the modern era of therapeutics, the proniosomal system 
has been identified as the most intriguing one among various novel 
systems, thus considerably enhancing the bioavailability of low‑soluble 
drugs. The current study aimed to study the enhancement of therapeutic 
efficacy of topotecan  (TPT) with curcumin  (CUR) coadministration. 
Materials and Methods: We optimized the preparation of niosomes, 
concerning concentrations of lecithin, span 60, and cholesterol. Seventeen 
trials were proposed by the selected design. All these batches were 
initially evaluated only for entrapment efficacy (EE), vesicle size (VS), and 
percentage of TPT release by the end of 12 h. Analysis of variance and 
generated regression equations were assisted to study the significant 
variables and magnitude of impact. Results: The desirability of 0.893 
was achieved with the optimum concentrations of selected independent 
variables in attaining the highest EE (90.393%), minimum VS (386.264 nm), 
and percentage of TPT release  (98.614% at 12 h). TPT and CUR release 
from the optimized formulation were found to be anomalous or non‑Fickian 
diffusion, as evident from the n value of Peppas model. The cytotoxic 
studies demonstrated that TPT and CUR in liposomal and free forms were 
found to be less cytotoxic on MCF‑7 model cells. All these findings indicate 
that the coadministration of CUR with TPT proniosomes can be a promising 
strategy to enhance the antitumor treatment.
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SUMMARY
•  The present research seeks to explore the influence of topotecan (TPT) and 

curcumin (CUR) coadministration in innovative proniosomal formulations. The 
multiple formulation parameters in manufacturing niosomes were adjusted 
utilizing response surface technology and a statistical desirability approach. 
Optimized formulation was examined for several in  vitro parameters, and 
all the findings obtained were in compliance with the need. Prolonged and 
increased dissolution characteristics were found with both TPT and CUR. 
Further cytotoxicity is necessary to validate the improved antitumor impact 
of formed proniosomes; therefore, proniosomes of TPT with CUR may be 

employed effectively to deliver to the target site. However, these results 
should be connected with animal models.

Abbreviations used: TPT: Topotecan; DNA: Deoxyribonucleic acid; CUR: 
Curcumin; 5‑FU: 5‑Fluorouracil; RBF: Round bottom flask; VS: Vesicle size; 
EE: Entrapment efficacy; BBD: Box–Behnken design; SEM: Scanning 
electron microscopy; PXRD: X‑ray powder 
diffraction.
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INTRODUCTION
Globally, cancer is the major cause of death.[1] Various factors such 
as systemic drug dissemination, lack of specificness to the tumor 
area, inadequate local drug levels at the target site, and improper 
control on drug deliverance have been found to constrain traditional 
chemotherapy. The usual system-wide distribution pattern of 
chemotherapeutic agents leads to detrimental effects as the drug 
targets both cancerous cells along healthy normal cells. Thus, it is 
primarily important to generate selectively targeted agents against 
the tumor. This necessity has brought about a hunt for novel methods 
of drug carriage to overcome the impeding factors and to provide 
effective cancer therapy.
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Nanotechnology-based carrier systems such as liposomes, 
nanomolecules, and nanosized emulsions have been developed to 
enhance the bioavailability, cellular intake, aqueous solubility, and activity 
of many antitumor agents,[2] which might probably boost intended target 
delivery and cellular internalization into the tumor cells.[3] Colloidal drug 
carrier systems such as liposomes or niosomes are merely definitive in 
comparison to traditional dosage forms. These particles serve as the drug 
pool/reservoirs and alter the surface or particle composition and thus 
can modify the drug release (DR) pattern or the affinity toward target 
cells.[4] Proniosomes provide a potential vesicular system that may be a 
favorable carrier for lipophilic drugs, particularly in their importance 
of ease of production, and trite scaling up. Proniosomes possess a 
distinctive amphiphilic nature. They can seduce hydrophilic as well as 
hydrophobic drugs into the vesicles. The rate of penetration of the drug 
into the skin is high for the entrapped drug in noisome vesicle than the 
free drug.[5] Further, proniosomes lessen the stability issues of niosomes 
such as accumulation, storage, blending, and leaking.
In the course of noisome production, several formulating and process 
variables can interfere with the performance and outcome of the final 
product. Hence, knowledge of these variables can provide valuable 
information related to the carriers for preparing niosomes. Quality by 
design (QbD) model comprises design and development of a product, 
to build the quality, while it is in the manufacturing process to meet 
the predetermined product norms.[6] QbD is a systematic process that 
recommends the integration of quality throughout the development 
process, rather than checking the quality of the product at the end. 
Implementation of QbD can notably decrease the time and cost of 
product manufacturing and development.[7,8] Further, it is beneficial 
in acquiring the possible best configuration of the formulation and 
provides the comprehensive perception of the process and way of product 
performance.[9] In this approach, the noticeable point is to recognize the 
importance of material attributes and processing factors that influence 
the quality of the product and further optimization framework about the 
end specifications.[10] Moreover, QbD components are now a part of the 
regulatory requirements of the submissions and are recommended by 
the International Conference on harmonization.[11]

Topotecan (TPT), a semisynthetically derived analog of camptothecin,[12] 
is presently permitted by the different regulatory authorities for treating 
several cancers that are unsusceptible to traditional chemotherapeutic 
agents. In addition, it is also used in combination along with other 
standard agents for better therapy.[13] As the other camptothecin 
derivatives, TPT also impedes the action of topoisomerase-I, resulting 
in lethal DNA damage. Despite having excellent antineoplastic activity, 
the clinical use of TPT is limited because of its severe toxicity. Preclinical 
studies disclosed that low-dose exposure for a longer duration resulted 
in significant antitumor efficacy with minimal toxicity.[14] Therefore, 
by subjecting tumor tissues to prolonged exposure to TPT, better 
antitumor efficacy and decrement in systemic toxic effects could be 
attained.[15,16] In addition, TPT is unstable at physiological pH, where 
the lactone ring opens and is converted to inactive carboxylate form. 
To maintain stability, TPT is encapsulated in a liposome that can hold 
to the phospholipids with unlike affinities. On encapsulation, the 
internal environment of liposomes prevents hydrolysis and stabilizes 
the lactone ring in physiological conditions. Researches proved that 
liposome-encapsulated TPT is more stable when compared to pure or 
free TPT. However, the traditional drug loading methods will cause low 
encapsulation efficacy, thus hindering the liposomal system. To conquer 
this drawback, different gradient techniques have been used for loading 
and entrapment of TPT into liposomes.
Curcumin  (CUR), the natural constituent found in turmeric, has 
been typically thought to produce desirable clinical effects on several 

neurological conditions.[2,3] Many experimental and clinical trials are 
pointed to explore the antineoplastic effects.[17,18] Several investigations 
indicated that CUR can be utilized as an adjuvant substance to aid 
available treatments of cancers. The chemotherapeutic effects of CUR 
on distinctive cell lines suggest the implication of a variety of signaling 
channels and molecular targets. However, the clinical potential of 
CUR is ample as it rapidly metabolized indigent aqueous solubility 
and absorption. Recent studies on CUR were found to be fascinating 
in proving efficacy. To improve its stability and bioavailability, 
Iurciuc Tincu et  al. adsorbed CUR into novel polysaccharide-based 
microparticles (gellan, i-carrageenan, and chitosan).[19] Two hydrophobic 
drugs, naturally derived CUR and synthetic 5-fluorouracil, were 
loaded into pH-sensitive polymer micelles formed by a well-defined 
poly  (2-vinyl pyridine)-b-poly  (ethylene oxide)  (P2VP90-b-PEO398) 
block copolymer to show that these pH-sensitive polymer micelles 
are suitable for practical use as human-safe and smart injectable drug 
delivery systems.[20] In addition, immobilized curcumin in complex 
particles proved its protective role for the immobilized curcumin.[21]

In the present work, the proniosomal formulation of TPT, 
coadministration with CUR, was optimized and studied for particle 
size, surface morphology, and in vitro drug release (DR). In addition to 
these cytotoxic and cellular uptakes, studies were performed to study the 
antitumor efficacy.

MATERIALS AND METHODS
Materials
TPT was generously gifted Tokyo Chem. Inc.  (Tokyo, Japan). CUR 
was obtained from Huabiao Biotechnology Co., Ltd  (Tianjin, China). 
Span 60 was procured from S.D. Fine Chemicals Pvt. Ltd., Mumbai, 
India. Soy lecithin was purchased from Lipoid (Lipoid S100, Germany). 
Cholesterol and maltodextrin were obtained from Yarrow Chemicals, 
Mumbai, India.

Fourier transmission infrared spectroscopy
To evaluate the physical interactivity among TPT, span 60, cholesterol, 
soy lecithin, and maltodextrin, Fourier transmission infrared (FTIR) was 
conducted. The compatibility was studied with an IR spectrophotometer 
JASCO 5200 FTIR  (Tokyo, Japan) by computing the transmittance in 
the region of 4000–400 cm−1. The corresponding peaks obtained were 
matched to observe any possible interactions among TPT and other 
additives.[22]

Preparation of proniosomes
Proniosomal powders were made through slurry method that was 
reported elsewhere.[23] The drug and lipid mixtures were added to 20 ml 
solvent mixture of methanol-chloroform in the ratio of 2:1. Further, the 
solution was transferred to 100 ml round bottom flask (RBF) containing 
0.250  g of maltodextrin and then vortexed to obtain the slurry for 
5–10  min. The RBF was attached to a rotary evaporator  (50°C–60°C) 
for about 15–20  min, at reduced pressure to vaporize the chloroform. 
Later, the vacuum was released to allow absolute evaporation of the 
solvent, and the powder was kept overnight in a desiccator. Finally, 
obtained proniosomes were stored at room temperature in tightly closed 
containers.[24] The CUR proniosomes were prepared by taking the same 
optimized concentrations of span 60, lipid, and cholesterol as that of 
TPT.

Experimental design
Formulation of TPT proniosomes was optimized, considering 
concentrations of lecithin  (X1), span 60  (X2), and cholesterol  (X3) as 
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three factors. These factors were studied at three different levels (−1, 0, 
and 1) [Table 1], to evaluate the significant effect of these variables on 
the selected responses such as vesicle size (VS), entrapment efficacy (EE), 
and percentage DR at 12 h. Box–Behnken Design (BBD, Design Expert 
v 11.0) is applied to inspect quadratic surfaces response and to construct 
polynomial equations. Using this program, the polynomial equation was 
generated, as given below.

= + + + + + +

+ + +
0 1 1 2 2 3 3 4 1 2 5 1 3

2 2 2
6 2 3 7 1 8 2 9 3

( )iY Quadratic b b X b X b X b X X b X X
b X X b X b X b X

Characterization of proniosomes
Entrapment efficiency
To determine EE of proniosomes, a simple ultracentrifugation method 
was performed. The samples were centrifuged at 20,000 rotations 
per minute for 3 h in a centrifuge  (Remi, Mumbai, India) at 4°C. The 
collected supernatant was mixed with phosphate buffer solution to 
make suitable dilutions and further estimated for the drug content (Cb) 
using ultraviolet-visible spectroscopy (Shimadzu 1800), compared with 
total drug concentration Ca. The EE percentage was calculated from 
equation.[25,26]

100
C

Ca CbEE
a
−

= ×

Number of vesicles
The prepared proniosomal powder was hydrated in a phosphate buffer of 
pH 6.8 before counting the number of vesicles generated using an optical 
microscope and a hemocytometer.[27] The niosomes within 80 squares 
of the counting chamber were counted and calculated by employing the 
formula:

:

4000

Totalno of niosomes per cubic mm
Totalnumber of niosomescounted

DilutionFactor
Totalnumber of squarescounted

=

× ×

Vesicle size, polydispersity index, and zeta 
potential
Zetasizer  (Malvern Mastersizer 2000 instruments Ltd., UK) with 
photon correlation spectroscopy was used to estimate the particle 
size, polydispersity index  (PDI), and zeta potential of the optimized 
formulations.[28] Before analysis, the samples were diluted with PBS and 
allowed to pass through a membrane filter 0.45 mm.[29] The Zetasizer was 
utilized to determine the surface charge of the entrapped vesicle. The 
vesicles mean zeta potential was determined.[30] The values represented 
here are based on three different experiments, all with three replicates; 
N = 3.

Scanning electron microscopy
Scanning electron microscopy  (SEM) was used to determine the 
surface morphology of the optimized proniosome formulation  (JEOL, 
JSM-6100, Japan). Formulations were adhered to the brass stub using 
adhesive tape and then coated with a thin coating of gold to make them 
electrically conductive, and SEM pictures were taken at a 15 k electron 
volt acceleration voltage.[4]

X-ray powder diffraction
The X-ray powder diffraction  (PXRD) studies of the pure drug and 
optimized proniosome powder formulation was studied using In situ 
Benchtop XRD/X-ray fluorescence. The patterns were obtained with 
the conditions such as 40 mA current, copper K-alpha radiation, nickel 
filter, graphite monochromator, and voltage of 45 kV with X’Celerator 
detector.[31]

In vitro dissolution study
A dissolution study was performed loading 2 mg of each formulation into 
the dialysis sacks of cutoff size of 12–14 kDa. 7.4 pH phosphate buffer 
was used in the receptor phase, and the temperature was maintained at 
37°C. At different time intervals, 2 mL of aliquots was withdrawn and 
replaced with fresh medium. After suitable dilution, the absorbance was 
measured spectrophotometrically, and this information was used to 
determine the amount of TPT released.[32]

Cytotoxicity studies
The MTT test is used to investigate the cytotoxic effects of cells in vitro. 
MCF-7  cells were seeded into 96-well microplates at a density of 
7 × 103 cells per well. After 24 h of attachment, subsequently, the cells were 
added with 200 μL fresh medium that consist of serial dilutions of the 
different drug or noisome formulations: of the different drug/proniosomal 
formulations: TPT solution, free TPT  +  free CUR physical mixture, 
coadministration of proniosomal CUR-proniosomal TPT, incubated for 
48 h and 72 h.[33,34] After 48 h of incubation, 20 μL MTT (5 mg mL − 1 in 
PBS) was added to each 96-well plate and further incubated at 37°C for 
3 h. After carefully separating the medium, 180 L of dimethyl sulfoxide 
was added to each well to dissolve the formed form a zan crystals.
Further, by using EPOCH Microplate Spectrophotometer (synergy HTX, 
BioTek, USA), the absorbance of each well was recorded at 570 nm.[35,36] 
The cytotoxicity was represented by the inhibitory concentration (IC50) 
value, which is defined as the drug concentration required to prevent cell 
growth by 50% in comparison to the control sample.[37]

Stability studies
Stability studies were performed for optimized formulations in 
consistent with ICH guidelines. The optimized formulations were stored 
at 25°C  ±  2°C/65% ± 5% and refrigerated condition  (4°C  ±  2°C).[38,39] 
Later, the samples were examined for distinct parameters such as %EE, 
VS, zeta potential, and drug content in 0, 3, and 6 months after storage.[40]

RESULTS AND DISCUSSION
Fourier transmission infrared studies
To confirm the drug presence of TPT in proniosomal formulations, 
FTIR analysis was performed. Pure TPT spectra show the characteristic 
peaks at 1755.36, 1659.21, 1597.01, and 5106.52 cm−1. In addition, 
a strong band was identified at 2968 cm−1, corresponding to C-H 
stretch  [Figure  1]. The spectrum of the physical mixture of TPT and 
formulation ingredients does not show any shift in the position of 
characteristic bands of TPT, indicating the absence of interaction 
between TPT and the selected excipients, thus conforming to the 
compatibility.

Table 1: Box–Behnken design experimental plan of selected independent 
variables with coded and actual levels along with the constraints of 
dependent variables

Variables
Independent variables

Levels

−1 0 +1
X1=lecithin (mg) 800 950 1100
X2=span 60 (mg) 450 675 900
X3=cholesterol (mg) 100 200 300
Dependent variables Constraints
VS (Y1) Minimum
EE% (Y2) Maximum
DR (Y3) Maximum

VS: Vesicle size, EE: Entrapment efficacy, DR: Drug release
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Optimization of proniosomal preparation
Response surface methodology  (RSM) allied with BBD was used to 
analyze the optimum concentrations of identified variables and the effects 
of their interactions to result in maximum EE, minimum VS, and desired 
DR profile. Projected runs and their measured responses are given in 
Table 2. VS of all the trail batches of proniosomes was found to be between 
350.24 nm and 556.32 nm. EE was about 71.54%–96.25%, whereas DR at 
the end of 12 h was estimated in the range of 55.21%–76.12%.
ANOVA was used to assess the responses and their influence on the 
selected factors. A quadratic model was chosen for all replies based on 
the model F and P values. This data production is further supported by 
the sequential sum of squares and model fit summary [Table 3].[41,42] All 
of the sequential P values were found to be significant, and the models 
that did not fit were determined to have a non-significant P value. All 
these parameters prove the fitness of the model. The difference between 
adju. and pred. R2 was found to be  <0.2, indicating the fitness of the 
particular design. High adeq precision scores (17.2729, 32.6937, and 
12.613) suggest that the chosen model is appropriate.[43]

Figure 1 verifies the normal distribution with a little deviation, illustrating 
the statistical consistency of the normal percentage probability and 
studentized residuals.

ANOVA was used to connect the factors with the obtained responses to 
generate polynomial equation. Table 3 shows the responses’ F, P, and lack 
of fit. These results were used to know the impact of coefficients of the 
selected model.[44,45]

The experimental findings showed that factors B, AC, and C2 model 
terms have a significant effect on EE, with P  =  0.0001, 0.0076, and 
0.0013, respectively. Factors B and AC exhibit synergistic effects, with 
factor B having the greatest amplitude. According to the experimental 
design, the VS was potentially altered by  (a) a synergistic effect of B 
and B2 with a P  =  0.0001 and  (b) an antagonist effect factor C with 
a P  =  0.0002. B, AC  (synergism), and polynomial terms of A and 
C had a substantial effect on DR  (antagonistic). Table 4 and the 
derived regression equations show that span 60 and cholesterol have 
a considerable impact on the production and release of drugs from 
proliposmes.
The main and interaction impacts of the chosen variables were elucidated 
using RSM  [Figure 2]. The desirability  (D) function was developed 
by defining criterion targets for EE - maximum, VS - minimum, and 
DR  -  within the range. Based on the D value  (0.893), the following 
optimal concentrations were chosen: 1099.99 mg lecithin, 718.135 mg 
span 60, and 242.034 mg cholesterol. This can meet the requirements of 
the goal formulation to achieve the greatest EE (90.393%), the smallest 
VS  (386.264  nm), and DR at the end of 12  h of 68.614%  [Figure  3]. 
An optimized formulation Optimized Topotecan formulation (O-TC) 
was formulated to validate the experimental output and perform the 
remaining evaluation tests. The accuracy of the design can be confirmed 
with less relative error (<2%) [Table 5].[46,47] Coefficient of variation (CV) 
values were found to be <10 (2.31 - EE, 1.89 - VS, and 3.07 DR) for all 
the models, which supports the reproducibility of the design.[48]

Entrapment efficacy
A high percentage of TPT entrapment was observed; this can be 
credited to span 60. Especially, span 60 consists of a long alkyl chain 
in contrast to other spans, thus accounting for higher EE, as illustrated 
in Table 2.[49] Conversely, these kinds of findings are unable to identify 
with cholesterol. In the majority of the formulations, higher cholesterol 
may compete for packing space with the drug molecule, resulting in 
limited drug loading.[50] Similar observations were portrayed by Jukanti 
et al.[51]

Table 2: Projected experimental runs and their observed responses

Run] Factors Responses

A: lecithin (mg) B: span 60 (mg) C: cholesterol (mg) EE (%) VS (nm) DR (%)
1 1100 450 200 76.54 468.35 57.43
2 950 450 300 71.54 452.12 58.12
3 1100 675 100 82.96 401.24 60.12
4 950 675 200 85.25 375.23 64.87
5 950 675 200 89.65 386.21 69.16
6 1100 900 200 96.25 542.15 76.12
7 950 900 100 94.64 556.32 74.32
8 950 675 200 90.65 390.14 70.12
9 1100 675 300 86.54 354.21 66.23
10 800 675 100 85.32 410.15 65.12
11 800 900 200 96.15 538.26 75.98
12 800 675 300 74.32 350.24 55.21
13 950 675 200 88.32 382.32 68.12
14 800 450 200 75.48 464.21 56.32
15 950 900 300 90.12 520.32 71.54
16 950 675 200 87.64 380.14 68.98
17 950 450 100 72.45 472.15 57.87

VS: Vesicle size, EE: Entrapment efficacy, DR: Drug release
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Figure 2: Optimized formulation
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Number of vesicles
The optimized proniosomal formulation has shown a good number of 
vesicles (4.45 mm3 × 103) that showed a good correlation with EE and 
VS results.

Average particle size, dispersity, and surface charge
The optimized formulation has shown the particle sizes in the 
range of 350.24  ±  40  nm to 556.32  ±  20  nm with a narrow PDI of 
0.11  ±  0.01  [Figure  4],[52] thus confirming the homogeneity of the 
formulation. Zeta potential of the obtained   Proniosomes (PNs)  was 
found to be −38.2 mV ± 0.6 mV. Both the charge and particle size seem 
to be relayed in the concentration of cholesterol.[53]

Scanning electron microscopy
O-TC formulation has been studied for SEM, and the results confirmed 
that the formed vesicles were found to be almost spherical.[54] As per 
Figure 5, SEM image also confirms the existence of span 60, as observed 
with the rough surface.[55] According to Abd-Elbary, EE will not be 
negatively affected by the degree of thickness.[56]

X-ray powder diffraction
The amorphous form of the medication can be determined by TPT 
diffraction peaks of lower intensity. As demonstrated in Figure  6, 
the improved formulation resulted in a significant change in peak 
intensity. Bioavailability qualities are most affected by the physical 
form and formulation of water-insoluble compounds. The crystal form 
of proniosomal formulation has been established, which is important 
for substances with inherent obstacles to drug administration, such as 
limited water solubility, delayed dissolution in gastrointestinal fluids, 
low permeability, or first-pass metabolism. Hence, proniosomes have the 
ability to enhance the bioavailability of loaded drug.[57]

In vitro dissolution study
DR profiles  (for 24  h) of pure TPT and CUR from O-TC are shown 
in Figure 7. Around 51.45% of TPT and 47.67% of CUR release were 
observed at the end of 6  h; this concentration helps in achieving the 
desired therapeutic range. A  steady slow release of both TPT and 
CUR was observed for 24  h. Release kinetic data  [Table  6] confirm 

Table 3: Fit statistics of the responses

EE VS DR
SD 1.97 8.26 2.01
Mean 84.93 437.87 65.63
CV% 2.31 1.89 3.07
Sequential P 0.0057 <0.0001 0.0147
Lack of fit P 0.5642 0.1258 0.4843
R² 0.9745 0.9938 0.9641
Adjusted R² 0.9418 0.9858 0.9178
Predicted R² 0.8248 0.9250 0.7234
Adequate precision 17.2729 32.6937 12.613

VS: Vesicle size, EE: Entrapment efficacy, DR: Drug release, SD: Standard 
deviation, CV: Coefficient of variation

Table 4: ANOVA coefficients table for all the responses

Intercept A B C AB AC BC A² B² C²

EE 88.302 1.3775 10.1438 −1.60625 −0.24 3.645 −0.9025 −1.04975 −1.14725 −4.96725

P 0.0880 <0.0001 0.0541 0.8141 0.0076 0.3891 0.3095 0.2701 0.0013

VS 382.808 0.38625 37.5275 −20.3713 −0.0625 3.22 −3.9925 −0.4165 120.851 −3.4315

P 0.8985 <0.0001 0.0002 0.9883 0.4612 0.3659 0.9205 <0.0001 0.4222

DR 68.25 0.90875 8.5275 −0.79125 −0.2425 4.005 −0.7575 −2.79 1.0025 −3.79
P 0.2421 <0.0001 0.3027 0.8164 0.0053 0.4760 0.0248 0.3406 0.0062

VS: Vesicle size, EE: Entrapment efficacy, DR: Drug release
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Table 5: Optimized solution with 95% confidence interval and tolerance interval

Solution 1 Predicted 
mean

Predicted 
median

SD SE mean 95% CI low 
for mean

95% CI high 
for mean

95% TI low for 
99% pop

95% TI high for 
99% pop

EE 90.3928 90.3928 1.9661 1.24922 87.4389 93.3468 78.9247 101.861

VS 386.264 386.264 8.2607 5.24868 373.853 398.675 338.08 434.448
DR 68.6141 68.6141 2.01188 1.27831 65.5914 71.6368 56.8789 80.3493

VS: Vesicle size, EE: Entrapment efficacy, DR: Drug release, SD: Standard deviation, SE: Standard error, CI: Confidence interval, TI: Tolerance interval
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Figure 6: X-ray diffraction spectra of (a) pure topotecan and (b) O-TC

Figure 4: Particle size distribution of O-TC

Figure 5: Scanning electron microscopy of O-TC
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Figure 7: In vitro drug release profile of O-TC
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the high fitting to Higuchi model with non-Fickian diffusion 
mechanism (n = 0.563).

Cytotoxicity studies
We initially proceeded to investigate the inhibitory impact of 
individual CUR and TPT in free and liposomal form on MCF-7 cells. 
Cells with a viability of less than 80% are typically deemed cytotoxic. 
Table 7 compares the IC50 values of several drugs. IC50 values of free 
TPT and free CUR solutions against MCF7 cells. Nano proniosomes 
were extremely effective at delivering TPT and CUR medications to 
MCF-7 cells, as shown in Table 7. When CUR and PTX were delivered 
in nano proniosomes instead of free CUR and free PTX solutions in 

MCF-7 cells, there was a threefold and 3.6-fold drop in CUR and TPT 
concentrations, respectively.[58,59] TPT and CUR in free and liposomal 
forms demonstrated decreased cytotoxicity on MCF-7 cells, a model for 
normal human mammary epithelial cells, according to these findings.

Stability studies
Various parameters of O-TC, such as VS drug content, EE, and zeta 
potential, were monitored at various time intervals for 6 months. On 
storage, crystallization was not observed, as evident from the constant 
VS  [Table  8]. In addition, constant EE and drug content confirm 
that there is no leakage of the drug during the time course. All these 
findings are more relevant under refrigeration conditions. To conclude, 
formulated proniosomal formulation was found to be comparatively 
more stable under refrigeration conditions in comparison to room 
temperature.

CONCLUSION
The current study aims to investigate the impact of TPT and CUR 
co-administratio in novel proniosomal formulations. The numerous 
formulation factors in making niosomes were optimized using 
response surface technique and a statistical desirability approach. 
The formulation with 1099.99 mg of lecithin, 718.135 mg of span 60, 
and 242.034 mg of cholesterol can meet the requirements of the ideal 
formulation. Optimized formulation was evaluated for various in vitro 
parameters, and all the results obtained were in accordance with the 
requirement. Prolonged and enhanced dissolution characteristics were 
observed with both TPT and CUR. Further cytotoxicity are warranted 

Table 6: Kinetic data of O-TC

Optimized 
formulation

Zero 
order (R2)

Higuchi 
model (R2)

Peppa’s 
model (n)

TPT 0.903 0.993 0.563
CUR 0.921 0.997 0.563

TPT: Topotecan, CUR: Curcumin

b

a
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to confirm the enhanced antitumor effect of formulated proniosomes; 
thus, proniosomes of TPT with CUR can be used effectively to deliver 
at the target site. However, these findings should be interrelated with 
animal models.
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