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ABSTRACT
Background: Acorus calamus – a critical medicinal plant, is overexploited, 
leading to population reduction. Establishing an efficient in vitro protocol 
is essential for the large‑scale production of genetically identical plants. 
Objectives: Development of fast and reliable in vitro regeneration protocol 
for A.  calamus and clonal fidelity assessment of the regenerants using 
molecular markers. Materials and Methods: Plants were regenerated on 
Murashige and Skoog medium with different concentrations of growth 
regulators in two phases  –  shooting and rooting. Random amplified 
polymorphic DNA  (RAPD) and inter‑simple sequence repeat  (ISSR) 
markers were employed to evaluate the genetic stability of in vitro clones. 
Results: 6 Benzylaminopurine  (BAP) at 1.6 and 2.4 mgL−1 was effective 
for shoot induction, while root induction was superior in indole‑3‑butyric 
acid‑incorporated medium at 2.5 mgL−  . Thirteen RAPD and 16 ISSR 
primers produced 59 and 96 clear, unambiguous, and reproducible bands, 
respectively. Both the markers revealed a high monomorphism of 96.79% 
and 95.63% among the regenerants. Nei’s genetic distance analysis 
disclosed a close genetic association (0.000–0.068) among the genotypes. 
Conclusion: ISSR was better than RAPD markers in clonal fidelity 
assessment of the regenerants. The in vitro protocol developed is reliable 
and suitable for the rapid propagation of true‑to‑type A. calamus plants.
Key words: Acorus calamus, dendrogram, DNA marker, genetic stability, 
genetic distance, micropropagation

SUMMARY
•  BAP at 1.6 and 2.4 mgL−1 produced the best shooting response, while 

indole‑3‑butyric acid at 2.5 mgL−1 was most appropriate for root induction.
•  Close genetic distances  (0.000 to 0.068) were maintained between the 

mother plant and in vitro regenerants.
•  Inter‑simple sequence repeat markers were more effective than the random 

amplified polymorphic DNA in clonal fidelity assessment of micropropagated 
Acorus calamus.

Abbreviations used: %: Percentage; °C: Degree centigrade; µl: 
Microliter; AFLP: Amplified fragment length polymorphism; ANOVA: 
Analysis using analysis of variance; BAP: 6 Benzylaminopurine; bp: 
Base pair; cm: Centimeter; CNS: Central nervous system; CTAB: 

Cetyl‑trimethyl‑ammonium bromide; DMRT: Duncan’s multiple range test;  
DNA: Deoxyribonucleic acid; dNTPs: Deoxyribonucleotide triphosphate; 
FRLHT: Foundation for Revitalization of Local Health Traditions; IAA: 
Indole‑3‑acetic acid; IBA: Indole‑3‑butyric acid; ISSR: Inter‑simple sequence 
repeat; mgL‑1: Milligram per liter; min: Minute; mM: Millimolar; MP: 
Mother plant; MS: Murashige and Skoog; ng: Nanogram; PCoA: Principal 
coordinate analysis; PCR: Polymerase chain reaction; PGRs: Plant growth 
regulators; RAPD: Random amplified polymorphic DNA; RFLP: Restriction 
fragment length polymorphism; SSR: Simple sequence repeat; Taq: 
Thermus aquaticus; TDZ: Thidiazuron; UPGMA: Unweighted pair group 
method for arithmetic averages.
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INTRODUCTION
Acorus calamus L.  (Common name  –  Sweet flag), belonging to the 
family Acoraceae, is a littoral inhabitant, monocot plant with creeping 
rhizome. The plant typically exists in four different natural cytotypes 
with their geographical distribution based on the ploidy levels.[1] While 
the diploid and triploid plants are distributed in North America and 
Europe, and the temperate Asian regions, respectively, the tetraploid 
plants are widespread in the eastern and subtropical areas of Asia.[2,3] The 
triploid plants are mostly confined to the Indian subcontinent and are 
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found cultivated mainly in Kashmir, Himachal Pradesh, Uttarakhand, 
Nagaland, Manipur, Tamil Nadu, Andhra Pradesh, and Maharashtra.[4,5] 
Morphologically, the plant grows up to 2–3 feet in length and bears 
branched rhizomes and sword‑shaped leaves along with rarely grown 
yellowish or greenish miniature flowers which are long, cylindrical, and 
covered in a multitude of rounded spikes.[6] The main part of the plant 
is the rhizome which is pale to dark brown in coloration, horizontally 
placed, jointed, vertically compressed, and spongy with a thickness of 
1.25–2.5cm.
A. calamus is widely popular for its high medicinal values. It possesses 
antispasmodic, antidiarrheic, antidepressant, antihelminthic, 
carminative, and central nervous system anxiolytic properties.[7] The 
rhizome is the most effective part of the plant utilized for formulating 
treatments of local ailments. The extract of the rhizome is used for 
the preparation of many general tonics and as a stimulant, laxative, 
expectorant, diuretic, and antitumor agent.[8,9] It is also applied as a 
traditional medicine in the management of insomnia, neurosis, cold, 
asthma, fever, epilepsy, hysteresis, memory loss, chest pain, and urinary 
tract infection.[10‑12] While the dried roots are used as flavoring agents 
and appetizers, the essential oil extracted from the rhizomes and roots 
is reported to possess insecticidal and antimicrobial properties.[13,14] 
Asarone, palmitic, Heptanoic acid, choline, flavones, ethanol, zinc, 
methanol, camphor, eugenol, and many other medicinally beneficial 
bioactive compounds are also found existing in the plant extracts.[15‑17]

There has been extensive exploitation of this highly valued medicinal 
plant from the natural habitats to meet the huge commercial demand. 
Traditional propagation of A.  calamus through seeds is not possible as 
the triploid plants do not produce seeds. Vegetative propagation through 
rhizome cutting has limitations as plant production through this method 
is slow with the potential of depleting the natural genetic resources. There 
is an alarming decrease in the natural population of A.  calamus due to 
indiscriminate collection and massive habitat destruction. The Foundation 
for Revitalization of Local Health Traditions (FRLHT), during an extensive 
survey, has perceived this plant as endangered in Kerala and vulnerable in 
Tamil Nadu and enlisted in the 100 red‑listed medicinal plants of South 
India.[18] In vitro propagation through plant tissue culture technique 
offers an alternative to slow conventional methods by mass‑producing 
genetically stable disease‑free plants rapidly. Maintaining the genetic 
identity of the in vitro regenerants is important as somaclonal variation 
may appear in the plants due to high growth hormone concentration, 
long culture duration, nutrient stresses, and other adverse culture 
conditions.[19,20] Somaclonal variation may be beneficial, but the emergence 
of genetic variation is a major concern when the primary regenerants are 
the required end products for the commercialization and conservation of 
the elite genotypes.[21] Hence, it is crucial to assess the clonal fidelity of 
the in vitro regenerated plants by using molecular markers. Preserving the 
genetic uniformity of the regenerants is also highly essential to develop 
superior planting materials akin to the mother plants.
There are few reports on the micropropagation of A.  calamus,[22‑25] 
but no studies have been conducted to test the clonal fidelity of the 
regenerants using molecular markers. Random amplified polymorphic 
DNA  (RAPD) and inter‑simple sequence repeat  (ISSR) markers have 
been previously used successfully in the genetic fidelity assessment of 
many micropropagated plants.[26‑30] However, it is more appropriate to 
use both the marker types than using a single marker system, as the more 
efficient ISSR markers can validate the results of the RAPD markers.[31] 
There are several reports of the combined use of RAPD and ISSR markers 
in the genetic homogeneity testing of different plants.[32‑38] The present 
study was conducted to develop an efficient and fast in vitro regeneration 
protocol for A. calamus and assess for the first time the clonal fidelity of 
the micropropagated plants using molecular markers.

MATERIALS AND METHODS
Micropropagation of Acorus calamus
Source of explants and sterilization
Young rhizomes of A.  calamus were collected during April–May from 
the natural populations of Manipur, India. The rhizome was washed 
thoroughly in the tap water and treated with 70% ethanol (v/v) for 1 min, 
followed by washing twice with sterilized distilled water. The rhizome 
was again treated with 0.2% HgCl₂ for 5  min followed by washing 
3–5 times with sterilized distilled water to remove the traces of mercuric 
chloride from the explants.

Culture medium and conditions
The sterilized explants were inoculated under the aseptic conditions in 
the laminar air hood on the freshly prepared Murashige and Skoog (MS) 
medium.[39] The inorganic salts of MS medium were obtained from 
HiMedia, Mumbai. The medium was supplemented with 3%  (w/v) 
sucrose (HiMedia, Mumbai) as the carbon source and was gelled using 
9% (w/v) agar (HiMedia, Mumbai). The pH of the medium was adjusted 
at 5.6 using 1N NaOH and 1N HCl before autoclaving. Induction 
of shoot and roots from the rhizome was studied in different plant 
growth regulators’  (PGRs) combinations and concentrations. Each 
PGR combination had 12 replicates, and the experiment was repeated 
thrice. Regular subculture was done every 3 weeks on a freshly prepared 
medium. After inoculation, the cultures were maintained at 25°C ± 2°C 
and illuminated by 3500 lux intensity for 16 h a day using fluorescent 
tubes.
Healthy and well‑rooted plants were deflasked and treated with warm 
sterilized water containing an antifungal agent (5% Bavistin) to remove 
any agar residues and fungal contamination from the plants if any. The 
plants were acclimatized in the small plastic pots containing sterilized 
sand and soil mixture (1:1). The plantlets were sprayed with half‑strength 
liquid MS medium without sugar alternate days for 3 weeks inside the 
laboratory before they were shifted to the glasshouse condition for 
further acclimatization for another 3 weeks.

Statistical analysis of culture data
In vitro response regarding the culture multiplication rate and shoot 
and root length growth was recorded every week. After successful 
shoot induction and growth, cultures with multiple shoots were 
transferred to the rooting medium containing different concentrations 
of auxins  (indole‑3‑butyric acid  [IBA] and indole‑3‑acetic 
acid  [IAA]). The data were subjected to statistical analysis using 
analysis of variance  (ANOVA, P ≤ 0.05), and the mean values of the 
different treatments were compared using Duncan’s multiple range 
test at P ≥ 0.05. The statistical examination in the present study was 
accomplished using the SPSS  (Version  16.0; SPSS Inc., Chicago, IL, 
USA).

Genetic stability assessment of Acorus calamus
DNA extraction
Genomic DNA was extracted from the leaves of the mother plant, and 
eight randomly selected in  vitro raised A.  calamus using a modified 
cetyl‑trimethyl‑ammonium bromide method.[40] The qualities and 
quantities of the isolated DNA samples were determined using a 
spectrophotometer  (Perkin‑Elmer Lambda 35) at 260 and 280  nm, 
respectively. The DNA samples were later checked for their purity and 
integrity by performing 0.8% agarose gel electrophoresis and comparing 
the intensity of the resultant bands with 1kb DNA ladder (HiMedia). The 
extracted DNA samples were finally stored at  ‑20°C after performing 
dilution to 50 ng/µl.
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Random amplified polymorphic DNA
Thirteen decamer RAPD primers (Eurofins) were selected after screening 
25 different primers based on the production of clear, reproducible, and 
scorable bands. RAPD primer amplification was performed in 25 µl 
volume with 20 ng of genomic DNA, 2.5 µl of 10 × PCR buffer containing 
15 mM MgCl2, 0.02 mM dNTPs, 1 unit of Taq polymerase (Bangalore 
Genei, India), and 20 ng RAPD primer. The amplification reactions were 
executed with a program of initial DNA denaturation at 94°C for 4 min, 
followed by 45 cycles of 1 min denaturation at 94°C, 1 min annealing at 
30–32°C, and 1 min of extension at 72°C with the final extension at 72°C 
for 10 min.

Inter‑simple sequence repeats
Sixteen ISSR primers that generated distinct and scorable bands 
were chosen after the initial screening of 27 ISSR primers obtained 
from integrated DNA technologies. PCR reactions were conducted 
in a 25 µl volume consisting of 20  ng of template DNA, 2.5 µl 
of 10  ×  PCR buffer with 15 mM MgCl2, 0.02 mM dNTPs, 1unit 
of Taq polymerase  (Bangalore Genei, India), and 20  ng of ISSR 
primer. The PCR amplification was performed with a program 
of initial denaturation at 94°C for 4  min, followed by 40  cycles of 
denaturation at 94°C for 1 min, annealing at 5°C less than the melting 
temperature (Tm) of the respective primer for 1 and 2 min extension 
at 72°C with a final extension at 72°C for 10 min.

Data analysis
The consistent and reproducible bands generated by the selected 
RAPD and ISSR primers were scored. The band intensity was not 
taken into account for the scoring. The data were pooled into a 
data binary matrix based on the presence  (1) or absence  (0) of the 
selected bands. Nei’s similarity matrix values were determined by 
employing GenAlEx  (Genetic Analysis in Excel) Version  6.5 software. 
The similarity matrix values were subjected to cluster analysis using 
UPGMA (unweighted pair group method for arithmetic averages), and 
dendrograms were generated using MEGA 5. The principal coordinate 
analysis (PCoA) was performed using GenAlEx 6.5 to define the spatial 
distribution of the in vitro regenerants and the mother. The correlation 
between the genetic distance matrices of RAPD and ISSR markers was 
analyzed using the Mantel test.[41]

RESULTS AND DISCUSSION
Variations in the growth response were observed when rhizome explants 
of A. calamus were cultured on MS medium supplemented with different 
growth hormones, namely BAP, TDZ (thidiazuron), IBA, and IBA IAA. 
However, high genetic stability was maintained among the genotypes 
of in vitro raised plants and mother plants, irrespective of the effect of 
different concentrations of PGRs.

In vitro rhizome culture
Successful shoot regeneration was observed in all the hormone 
combinations tested, with the initiation of shoot growth starting 
from the 3rd day of inoculation [Figure 1a and b]. Although the shoot 
regeneration did not differ much in the medium incorporated with 
BAP and TDZ, a lower shoot regeneration rate was evidenced in the 
medium when auxins were added along with BAP or TDZ in the 
medium. The low shoot regeneration could be ascribed to the inhibitory 
action of auxins on shoot development. However, the promotive 
effect of BAP partially reversed the inhibition induced by auxins.[42] 
Such an inhibitory effect of auxin on shoot induction via rhizome 
explant of A. calamus was also reported.[6] The highest percentage of 
shoot regeneration  (83.33%) was observed in the medium fortified 

with 2.4 mgL−1 BAP. Rani et  al.[22] similarly reported high shoot 
multiplication in BAP‑incorporated medium. The effectiveness of 
BAP on shoot induction was also noticed on a rare medicinal plant, 
Chlorophytum borivilianum.[43] The least  (44.72%) shoot formation 
was recorded in the medium augmented synergistically with equal 
concentration  (0.8 mgL‑1) of TDZ and IBA  [Figure  2]. Murch and 
Saxena[44] observed the accumulation and translocation of auxin in 
Pelargonium  × hortorum Bailey when the plant tissues were exposed 
to TDZ, which led to its limited influence on shoot regeneration. 
As observed in the earlier work,[22] the shoot regeneration varied 
significantly when the concentration of BAP (0.8 mgL−1) was increased 
to 1.6 mgL−1 and 2.4 mgL−1. Among the six different combinations of 
BAP and auxins (IBA and IAA), the percentage of shoot regeneration 
was highest  (67.78%) in the medium augmented with equal 
concentration  (0.8 mgL−1) of BAP and IAA  [Figure  2]. Contrary to 
TDZ, the shoot induction increased when the concentration of BAP was 
enhanced from 0.8 mgL−1 to 2.4 mgL−1. Verma and Singh[6] also reported 
a similar effect of higher BAP concentration on shoot induction. At 
equal PGR concentration, the rate of shoot development in 0.8 mgL−1 
BAP + 0.8 mgL−1 IAA was superior than 0.8 mgL−1 TDZ + 0.8 mgL−1 
IAA [Figure 2].
The shoot number per explant was more in medium containing BAP 
than TDZ when present singly. The high efficiency of BAP on shoot 
induction was also witnessed in earlier studies.[6,45] Shoot formation 
was reduced from 2.69  ±  0.04 to 1.59  ±  0.24 when 1.6 mgL−1 BAP 
was incorporated into the medium with either 0.8 mgL−1 of IBA or 
IAA  [Table  1]. Tikendra et  al.[46] also witnessed the inhibitory effect 
of auxins on shoot development. Bhagat[47] made similar observations 
on shoot multiplication in a medium containing BAP and auxins. 
Development of stunted shoot length in BAP and IAA containing 
medium was also earlier found in A. calamus.[22] The highest shoot length 

a b c

d e f
Figure  1: In vitro propagation of Acorus calamus from rhizome 
segment. (a) Shoot induction in Murashige and Skoog (MS) +0.8 mgL−1 6 
benzylaminopurine  (BAP),  (b) Shoot multiplication in MS  +  2.4 mgL−1 
BAP, (c) Initial root formation in MS + 0.8 mgL−1 thidiazuron, (d) Multiple 
root formation in plantlets grown in MS  +  2.5 mgL−1 Indole‑3‑butyric 
acid,  (e) Well-grown plants with complete leaf and root development 
appropriate for hardening, and  (f ) Hardening of the well‑acclimatized 
A. calamus
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was noticed in medium fortified with 2.4 mgL−1 BAP (7.58 ± 0.39 cm), 
followed by medium containing 1.6 mgL−1 BAP  +  0.8 mgL−1 
IBA (6.57 ± 0.63 cm), 0.8 mgL−1 TDZ + 0.8 mgL−1 IBA (5.97 ± 0.21 cm), 
and 1.6 mgL−1 TDZ + 0.8 mgL−1 IAA (5.06 ± 0.12 cm) [Table 1]. The 
earliest root development was observed at the 3rd  week of culture in 
the medium enriched with 0.8 mgL−1 TDZ [Figure 1c]. In contrast, no 
such adventitious root formation was witnessed in BAP‑incorporated 
medium. Bhagat[47] made a similar observation of the absence of root 
development in BAP containing medium in A.  calamus, even after 
3  weeks of culture. Following this observation, the plantlets were 
transferred to newly prepared rooting media incorporated singly 
with either IAA or IBA at different concentrations. Prominent rooting 
response with the highest root number  (6.39  ±  0.78) and the most 

extended root length (4.58 ± 0.6 cm) was noticed in medium enriched 
with 2.5 mgL−1 IBA [Figures 1d and 3]. IBA was the most effective in 
inducing rooting compared to IAA in the present study. The earlier 
report also showed the effectiveness of IBA over IAA on in vitro root 
growth and development in A. calamus.[48] Well‑grown healthy plants 
were selected and transferred to the small plastic cups containing 
sterilized sand and soil mixture  (1:1) for proper acclimatization and 
successful hardening [Figure 1e and f].

Genetic homogeneity assessment
Although genetic variability among the crops, medicinal plants, and 
other rare species is important for the genetic improvement of the 
species, somatic variation among the in vitro clones is unwanted if one 
desires to conserve the elite genotype.[49,50] The loss of cellular regulation 
on the growth of in vitro cultured plants, somatic mutations associated 
with the explant tissues, the inappropriate concentration of PGRs, and 
prolonged culture duration are linked to the occurrence of somaclonal 
variation.[49,51‑55] RAPD and ISSR were employed to assess the genetic 
stability among the genotypes of micropropagated A.  calamus and 
mother plants. Unlike the morphological markers, these DNA markers 
are generally stable against the influences of various environmental 
factors and were widely used for determining the genetic homogeneity 
of several micropropagated plants.[56‑59]

Random amplified polymorphic DNA and 
inter‑simple sequence repeat banding profile 
analysis
Genetic homogeneity was analyzed among eight randomly selected 
in  vitro raised plants and mother plants. Out of 25 RAPD primers 
screened, 13 oligonucleotide primers, which generated reproducible 
bands with sizes ranging between 250 and 2000  bp, were selected 
for analysis. A  total of 61 amplified DNA fragments  (loci) with 
an average of 4.69 loci per primer were detected. Fifty‑nine loci 
were monomorphic, rendering a high monomorphism  (96.79%) 
among the regenerants  [Table  2]. Nei[60] estimated the minimum 
requirement of 50 different loci to evaluate the genetic distance 
between different species effectively. Different RAPD primers 
yielded variable numbers of informative amplified fragments, 
with OPE‑07 generating the highest number of seven amplified 

Figure 2: Effect of different plant growth regulators on the in vitro shoot regeneration of Acorus calamus

Table 1: Effect of various plant growth regulators on in vitro shoot 
development of Acorus calamus

PGRs (mgL−1) After 3rd week of culture

BAP TDZ IBA IAA Shoot number Shoot length (cm)
0.8 1.97±0.41abc 2.58±0.40efg

1.6 2.69±0.04a 3.24±1.02def

2.4 2.76±0.41a 7.58±0.39a

0.8 1.57±0.16bc 3.78±0.43cde

1.6 1.21±0.12bc 2.11±0.25fg

2.4 1.08±0.13c 2.91±0.81defg

0.8 0.8 0.90±0.80c 3.39±0.63def

0.8 1.6 1.17±0.24bc 2.88±0.58defg

1.6 0.8 1.59±0.24bc 6.57±0.63ab

0.8 0.8 1.12±0.11bc 2.32±0.39efg

0.8 1.6 1.15±0.35bc 1.59±0.15g

1.6 0.8 1.39±0.55bc 4.37±0.66cd

0.8 0.8 2.17±0.19ab 3.40±0.49def

0.8 1.6 1.23±0.08bc 2.53±0.45efg

1.6 0.8 1.98±0.48abc 2.59±0.58efg

0.8 0.8 1.79±0.58abc 5.97±0.21b

0.8 1.6 1.09±0.07bc 1.60±0.26g

1.6 0.8 1.54±0.18bc 5.06±0.12bc

Mean values (±SD) within a column followed by the same letter are not 
significantly different by Duncan’s multiple range test (P≥0.05). Values are based 
on 12 replicates per treatment in three independent experiments. SD: Standard 
deviation; PGRs: Plant growth regulators; BAP: Benzylaminopurine; TDZ: 
Thidiazuron; IBA: Indole‑3‑butyric acid; IAA: Indole‑3‑acetic acid
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fragments  [Figure  4a]. At the same time, the least of three loci 
were observed for OPA‑03, OPA‑05, and OPA‑10. Most primers 
showed monomorphic banding patterns except for one locus each 
of OPA‑07 and OPA‑13, which were polymorphic, accounting for 
3.21% of observed polymorphism among the regenerants  [Table 2]. 
Detection of low genetic polymorphism by RAPD analysis was also 
reported in genetic fidelity assessments of many in vitro propagated 
plants.[61,62] Although the RAPD markers have been used extensively 
in clonal fidelity assessment, in some instances, they failed to disclose 
the changes in the repetitive DNA sequences of some plants.[63] To 
affirm the outcome of RAPD analysis, the genetic homogeneity of 
A. calamus was further analyzed using the ISSR markers. The reason 
for selecting ISSR markers is their high variability, great potential to 
determine inter‑ and intra‑genomic diversity, and the presence of high 
copy numbers in eukaryotic genomes.[64,65] Furthermore, technically, 
ISSR markers are simpler when compared to AFLP, RFLP, and SSR, 
as no prior sequence information for the genomic DNA is required 
for amplification.[66] The longer nucleotide units  (15–30 mers) of 
ISSR than RAPD (10 mers) and their higher annealing temperature 
make them more stringent, reproducible, and informative.[67,68] The 

importance of two markers system in detecting the genetic stability 
was also demonstrated in almond,[69] Ziziphora canescens, Ziziphora 
tenuior,[70] and Bacopa monnieri.[37]

From a total of 25 ISSR primers screened, 16 primers were selected, 
which produced 96 clear and unambiguous bands generating 
six loci per primer. The size of amplified DNA fragments ranged 
from 250 to 2000  bp. Of the total amplified fragments, 91 loci were 
monomorphic, resulting in 95.63% monomorphism between the 
in vitro clones and the mother plant. UBC‑868 produced the highest 
number of 10 amplified monomorphic loci, while UBC‑807 and 
UBC‑813 generated low amplified bands of 4 each  [Figure  4b]. 
UBC‑863, on the other hand, displayed the lowest number of three 
loci. The low polymorphism  (4.37%) detected among the in  vitro 
clones was due to the presence of four polymorphic loci (three loci for 
UBC‑810 and one locus each for UBC‑848 and UBC‑871)  [Table 3]. 
This observation showed higher discriminatory power of ISSR over 
RAPD markers in detecting polymorphism. Several workers have 
previously demonstrated the ISSR to be more effective than RAPD 
markers in genotyping and genetic diversity studies of plants.[37,70‑72] 
Low polymorphism detection in the present investigation may also 

Figure 3: Effect of different concentrations of indole‑3‑acetic acid and indole‑3‑butyric acid on the in vitro root growth and development of Acorus calamus

Table 2: Random amplified polymorphic DNA primer used, number of scorable bands produced, band size, and the percentage of monomorphism recorded 
among the mother plant and micropropagated Acorus calamus

RAPD 
Primer code

RAPD Primer 
sequence (5’→3’)

Number of 
scorable bands

Number of bands Percentage of Range of 
amplification (bp)Monomorphic Polymorphic Mono morphism Polymorphism

OPA‑01 5’‑CAGGC3TTC‑3’ 5 5 ‑ 100 ‑ 2000-1000
OPA‑03 5’AGTCAGCCAC‑3’ 3 3 100 1500-500
OPA‑05 5’‑AG4TCT2G‑3’ 3 3 100 1500-750
OPA‑07 5’‑GA3CG3TG‑3’ 6 5 1 83.3 16.7 1000-250
OPA‑10 5’‑GTGATCGCAG‑3’ 3 3 ‑ 100 ‑ 1500-750
OPA‑11 CAATCGCCGT‑3’ 5 5 100 2000-750
OPA‑13 5’‑CAGCAC3AC‑3’ 4 3 1 75 25.0 2000-750
OPB‑02 5’‑TGATC3TGG‑3’ 6 6 ‑ 100 2000-250
OPC‑07 5’‑GTC3GACGA‑3’ 4 4 ‑ 100 ‑ 1500-250
OPC‑08 5’‑TG2AC2G2TG‑3’ 5 5 ‑ 100 ‑ 2000-250
OPD‑01 5’‑ACCGCGAAGG‑3’ 6 6 100 2000-250
OPE‑07 5’‑AGATGCAGC2‑3’ 7 7 ‑ 100 ‑ 1500-200
OPG‑15 5’‑ACTG3ACTC‑3’ 4 4 100 1500-750
Total 61 59 02 96.79 3.21 ‑

RAPD: Random amplified polymorphic DNA
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be attributed to the absence of the transitional callus phase during 
A.  calamus culture since callus formation may contribute to higher 
variability amongst the regenerants.[50,73]

Genetic distance and cluster analysis
From the pooled RAPD‑ISSR data, pairwise Nei’s genetic distance 
matrices between the in  vitro regenerants and the mother plant were 
estimated [Table 4]. The Nei’s genetic distance matrix value close to or 
equal to 0 represents a high degree of genetic uniformity among the 
genotypes.[74] The recorded Nei’s genetic distances were very low, ranging 
from 0.00 to 0.068, indicating a close genetic relationship between the 
regenerants (P1 to P8) and the mother plant (MP). The in vitro clones, 
except P2 and P8, were genetically identical  (0.000) to the MP. P2 
exhibited a genetic distance value of 0.068 with P8 and 0.050 with the 
remaining clones and MP. P8, on the other hand, showed a closer genetic 
identity than P2, with a genetic distance of 0.017 recorded with other 
regenerants and MP [Table 4]. Earlier works on Dendrobium chrysotoxum 
and Bulbophyllum auricomum also reported the detection of close genetic 
distance and low variability among the micropropagated plants.[35,75] The 
presence of low genetic distances due to differences in the observed loci 
can be attributed to the occurrence of genetic or epigenetic changes in 
the propagated plants, either by loss of certain loci or formation of new 
binding sites in the regenerants.[62] Since the culture condition such as salts 
composition of the medium, duration of photoperiod, and temperature 
are equally maintained, the variation detected could have arisen due to 
rapid disorganized growth induced by plant growth hormones.[49]

Table 3: Inter‑simple sequence repeat primer used, number of scorable bands produced, band size, and the percentage of monomorphism recorded among 
the mother plant and micropropagated Acorus calamus

ISSR primer 
code

ISSR Primer 
sequence (5’→3’)

Number of 
scorable bands

Number of bands Percentage of Range of 
amplification (bp)Monomorphic Polymorphic Monomorphism Polymorphism

UBC‑807 5’‑(AG)8T‑3’ 4 4 ‑ 100 ‑ 2000-750
UBC‑810 5’‑(GA)8T‑3’ 9 6 03 66.7 33.3 1000-250
UBC‑813 5’‑(CT)8T‑3’ 4 4 ‑ 100 ‑ 1500-500
UBC‑814 5’‑(CT)8A‑3’ 5 5 ‑ 100 ‑ 1500-250
UBC‑820 5’‑(GT)8C‑3’ 6 6 ‑ 100 ‑ 1500-250
UBC‑822 5’‑(TC)8A‑3’ 6 6 ‑ 100 ‑ 1000-500
UBC‑823 5’‑(TC)8C‑3’ 7 7 ‑ 100 ‑ 2000-500
UBC‑824 5’‑(TC)8G‑3’ 6 6 ‑ 100 ‑ 2000-550
UBC‑827 5’‑(AC)8G‑3’ 5 5 ‑ 100 ‑ 1500-250
UBC‑830 5’‑(TG)8G‑3’ 8 8 ‑ 100 2000-500
UBC‑848 5’‑(CA)7CR*G‑3’ 5 4 1 80 20 2000-750
UBC‑863 5’‑(AGT)6‑3’ 3 3 ‑ 100 ‑ 1000-500
UBC 868 5’‑(GAA)6‑3’ 10 10 ‑ 100 ‑ 2000-250
UBC‑871 5’‑(TAT)6‑3’ 6 5 1 83.33 16.67 1500-250
UBC‑875 5’‑(CTAG)4‑3’ 7 7 ‑ 100 2000-500
UBC‑877 5’‑(TGCA)4‑3’ 5 5 ‑ 100 2000-750
Total 96 91 5 95.63 4.37 ‑

R*=A/G. ISSR: Inter‑simple sequence repeat

Table 4: Genetic distance between the mother plant and the in vitro regenerants (P1–P8) of Acorus calamus based on Nei’s coefficient of similarity obtained 
from pooled random amplified polymorphic DNA‑inter‑simple sequence repeat data

P1 P2 P3 P4 P5 P6 P7 P8 MP

0.000 P1

0.050 0.000 P2

0.000 0.050 0.000 P3

0.000 0.050 0.000 0.000 P4

0.000 0.050 0.000 0.000 0.000 P5

0.000 0.050 0.000 0.000 0.000 0.000 P6

0.000 0.050 0.000 0.000 0.000 0.000 0.000 P7

0.017 0.068 0.017 0.017 0.017 0.017 0.017 0.000 P8
0.000 0.050 0.000 0.000 0.000 0.000 0.000 0.017 0.000 MP

MP: Mother plant

a b
Figure  4: DNA banding patterns of the in  vitro raised plantlets  (P1‑P8) 
and the mother plant of Acorus calamus. (a) Banding profile for random 
amplified polymorphic DNA primer  (OPE‑07);  (b) Banding profile for 
inter‑simple sequence repeat primer (UBC‑807)
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The UPGMA dendrogram obtained from RAPD analysis consisted 
of two main clusters. One primary cluster comprised MP and P1, 
P2, P3, P4, P5, P6, and P7, while the lone P8 was positioned in 
another group [Figure 5a]. Similarly, the dendrogram from the ISSR 
analysis produced two clusters. The major cluster harbored MP, P1, 
P3, P4, P5, P6, P7, and P8, while P2 was only found in the minor 
cluster  [Figure  5b]. The dendrogram obtained from the pooled 
RAPD‑ISSR data showed a close similarity with the genotype 
clustering pattern of the ISSR marker. The main cluster consisted of two 
subclusters with P1, P3, P4, P5, P6, and P7 grouping in one subcluster 
and lone MP existing in another [Figure 5c]. The other minor cluster 
consisted of P2 only, indicating its genetic dissimilarity with the rest 
of the plants. Further, PCoA arranged the genotypes with respect 
to the two coordinates  [Figure  6]. The first and second coordinates 
accounted for 76% and 24% of the total variation, respectively. The 
genotypes were spatially distributed in the first three quadrants. P2 
was plotted in the first quadrant, P8 in the second quadrant, and the 
remaining P1, P3, P4, P5, P6, P7, and MP were located in the third 
quadrant. The distribution pattern in PCoA plot affirmed the genotype 
association as depicted by dendrogram analysis. A similar observation 
of consistency in genotype distribution as defined by UPGMA and 
PCoA was reported among micropropagated Dendrobiums.[72]

Correlation analysis of random amplified 
polymorphic DNA and inter‑simple sequence 
repeat markers
The Mantel test was conducted to check the correlation between 
the genetic similarity matrices obtained from RAPD and ISSR 

analysis. Despite high genetic monomorphism revealed by both the 
markers, no significant correlation was found between the RAPD 
and ISSR markers  (r = −0.125; P  =  0.31)  [Figure  7a]. The lack of 
correlation between the genetic matrices of RAPD and ISSR markers 
indicated that each marker system measured different aspects of 
genetic variability. Similar observations of noncorrelations between 
different marker types were also demonstrated in Oleo europaea[76] 
and Dendrobium moschatum.[62] The genetic correlation estimation 
between the genetic matrices based on RAPD and pooled RAPD‑ISSR 
data was significant but relatively low (r = 0.202; P = 0.02) [Figure 7b]. 
However, the correlation test between the matrices of ISSR and pooled 
RAPD‑ISSR was significantly high (r = 0.947; P = 0.04) [Figure 7c]. 
This could be due to higher band number  (6) detected by ISSR 
than RAPD markers with low band numbers  (4.69). Corroborating 
with the earlier reports,[33,77] the present analysis also revealed the 
effectiveness of ISSR over RAPD markers in determining the genetic 
polymorphism among the genotypes of micropropagated A. calamus. 
It further manifested the importance of ISSR markers as the main 
component of the two marker systems for validating the results of 
RAPD markers.

CONCLUSION
The high monomorphism disclosed through RAPD  (96.79%) and 
ISSR  (95.63%) marker analysis indicated the maintenance of genetic 
uniformity among the regenerants. The present investigation confirmed 
the potential application of RAPD and ISSR markers in effectively 
detecting genetic homogeneity among the regenerants and mother 
plants. This study can be considered a primary step towards propagating 
genetically stable A.  calamus plants via rhizome explant using two 
marker systems. The use of molecular markers ensured the production 
of genetically identical A.  calamus through the established in  vitro 
protocols and detection of genomic variability, if any, at the early growth 
stage of this medicinally important plant.
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Figure  6: Principal coordinate analysis plot showing the distribution of 
the mother plant and the in vitro regenerated plants (P1 to P8) of Acorus 
calamus

c

b

a

Figure  5: Unweighted pair group method for arithmetic averages 
dendrograms obtained from  (a) Random amplified polymorphic 
DNA  (RAPD) marker analysis,  (b) ISSR marker analysis, and  (c) Pooled 
RAPD‑ISSR data analysis showing the genetic relationship between the 
mother plant and randomly selected in  vitro regenerants  (P1 to P8) of 
Acorus calamus
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