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ABSTRACT
Background: Costunolide  (Co) has anti‑tumor, anti‑inflammation, and 
anti‑ulcer effects, it has the budding effect of anti‑apoptosis. This study was 
intended to explicate its inhibitory effect on caspase in a mice brain slices 
injury model. Materials and Methods: The maestro 11.1 software was 
employed to envisage the binding sites of Co with Caspase-3, Caspase‑9, 
and Caspase‑7. Oxygen‑glucose deprivation/reoxygenation  (OGD/R) 
method was employed to persuade mouse brain slice injury in  vitro. 
Purpose of lactate dehydrogenase  (LDH) in culture medium and 
2,3,5‑triphenyl‑tetrazolium chloride  (TTC) staining of brain slices for the 
assessment of injury degree. The expression of Cytochrome c, Caspase‑9, 
Caspase‑7, Caspase‑3, Bcl‑2, and Bax was studied by Western blot method. 
Results: The results of docking displayed that Co had binding sites withe 
Caspase‑9, Caspase‑7, and Caspase‑3. Compared with OGD/R, Co could 
diminution the LDH levels, upsurge the TTC staining intensity, augment 
Bcl‑2 expression level and inhibit Caspase‑3, Caspase‑9, Caspase‑7, 
Bax, and Cytochrome c expression levels. Conclusion: These results 
recommended that Co has latent neuroprotective activities by inhibiting 
caspase expression.
Key words: Apoptosis, brain slice, Caspase-3, costunolide, ischemic 
stroke

SUMMARY
•  Costunolide  (Co) has binding sites with Caspase‑9, Caspase‑7 and 

Caspase‑3. Oxygen‑glucose deprivation/reoxygenation (OGD/R) method 
was employed to persuade mouse brain slice injury in vitro. Compared 
with OGD/R, Co could decline the Lactate dehydrogenase levels, surge 
the 2,3,5‑triphenyl‑tetrazolium chloride staining intensity. Compared with 
OGD/R, Co could augment Bcl‑2 expression level and inhibit Cytochrome 
c, Bax, Caspase‑3, Caspase‑7, and Caspase‑9 expression levels.

Abbreviations used: Co: Costunolide; TTC: 2,3,5‑triphenyl‑tetrazolium 
chloride; OGD/R: Oxygen‑glucose Deprivation/reoxygenation; Cyt‑c: 

Cytochrome c; LDH: Lactate dehydrogenase; aCSF: Artificial cerebral 
spinal fluid; PDB: Protein data bank; PBS: Phosphate buffer saline.
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INTRODUCTION
Ischemic stroke is one of three types of stroke. It is also called to as brain 
ischemia and cerebral ischemia. It is a deadly ailment all over the world. 
Patients with ischemic stroke may agonize long‑term paralysis, cognitive 
deficits, and high mortality.[1‑3] Inflammation, glutamate toxicity, calcium 
overload, and apoptosis are vital pathogenesis of ischemic stroke.[1] 
Tissue plasminogen activator  (TPA) can be employed in patients with 
acute stroke.[4] However, TPA can cause blood‑brain barrier disruption, 
bleeding, and other side effects.[5] It is an urgent job to look for drugs 
to treat ischemic stroke. Many old‑style Chinese herbal medicines can 
be employed to treat ischemic stroke.[6] Therefore, we can invention and 
study the actual chemical constituents in these herbs to treat ischemic 
stroke.
Costunolide (Co) is largely from the Aucklandia lappa Decne,[7] Laurus 
nobilis L.,[8] Magnolia grandiflora,[9] and Michelia floribunda.[10] Co has 

anti‑carcinogenesis, anti‑inflammation, and other pharmacological 
effects.[11,12] Co can hinder the interleukin‑6  (IL‑6), tumor necrosis 
factor‑alpha (TNF‑α), and other inflammatory factors in BV2 microglial 
cells stimulated with lipopolysaccharide.[12] Within 12–24 h of ischemic 
stroke, a huge number of pro‑inflammatory factors  (such as IL‑6 and 
TNF‑α) are unconfined, and thrombo‑inflammation is the dynamic force 
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of ischemic stroke.[13] Inflammation leads to apoptosis and death of brain 
cells and the caspase pathway is a significant pathway of apoptosis.[14] 
Panaxatriol saponins could decrease inflammation and apoptosis after 
glucose‑oxygen deprivation in BV2 Cells.[15] However, whether Co has 
an anti‑apoptotic effect is unidentified.
Thus, we planned to reconnoiter whether Co had an anti‑apoptotic role 
by inhibiting caspase expression on mouse brain slice injury‑induced 
oxygen‑glucose deprivation/reoxygenation (OGD/R).

MATERIALS AND METHODS
Molecular docking
Finding the mol2 format of Co from PubChem. Co and its interacting 
protein crystals were familiarized into the Maestro 11.1 software ligprep 
module. The energy optimization of Co in the first field  (OPLS‑2005) 
was diminished. By querying the protein data bank, the structures 
of Caspase‑9  (RCSB ID, 3D9T), Caspase‑7  (RCSB ID, 4JR2), 
Caspase‑3 (RCSB ID, 2DKO), BAX (RCSB ID, 4ZIE) and Cytochrome 
c (RCSB ID, 5XTE) were attained. Using the Maestro 11.1 software Glide 
module, the target protein is altered, dehydrated and hydrogenated, 
under default parameters. The active site of docking is created by 
centring on the original ligand. Finally, Co is molecularly docked with 
the target protein.

Preparation of mice brain slices
Male ICR mice (weight 20 ± 2 g) were acquired from the Laboratory 
Animal Center of Ningxia Medical University  (No. 1160 Shengli 
Street, Xingqing District Yinchuan City, 750004, China). The 
preparation of mice brain slices and oxygen‑glucose deficiency 
reperfusion methods denote to our published article.[16] The mice’s 
brains were quickly detached after anesthetized with 0.3 mg/kg 
chloral hydrate, placed in a beaker with 0°C artificial cerebral spinal 
fluid (aCSF) for 2 min. The 0°C aCSF was soaked with 5% CO2/95% 
O2 in advance.[16] The brains were coronally cut from the bregma at 
0°C with a vibration slicing machine (LEICA VT 1000S), each slice 
was 350 μM thick.

Oxygen‑glucose deprivation/reoxygenation injury 
model
Positioned the brain slices in 35°C oxygenated aCSF for 1 h and relocated 
them to the culture dish  (six slices per dish). For oxygen‑glucose 
deprivation, the brain slices were moved into the medium without glucose, 
gassed with 95% N2 and 5% CO2 for 30 min. Afterward, the brain slices 
were transferred into a new culture dish cultured for 1 h.[16] The brain slices 
were alienated into Co (Batch No. AF8082206, 1, 5 and 10 μM), its content 
was 99%, was delivered by Chengdu Alfa Biotechnology (Chengdu, China), 
nimodipine (10 μM) was attained from Bayer (Germany, batch number: 
12301323), OGD and control group. Each group compromised 48 slices. 
Nimodipine and Co were added during oxygen‑glucose deficiency. The 
slices of the control group were cultured with aCSF that was soaked with 
5% CO2/95% O2, 35°C all the time.

Measurement of lactate dehydrogenase release
When cell membranes are interrupted, lactate dehydrogenase  (LDH) 
releases to extracellular. The higher the LDH content in the culture 
medium, the greater the degree of cell injury. We employed the LDH 
kit (Nanjing Jiancheng, China) to assess the content of LDH. The culture 
medium was composed and centrifuged for 5  min at 3000 rpm. The 
supernatant was verified using a spectrophotometer  (Thermo Fisher 
1510) at 450 nm.[16]

2,3,5‑triphenyl‑tetrazolium chloride staining
After reoxygenation was finished, the mice brain slices were located in 
2% 2,3,5‑triphenyl‑tetrazolium chloride  (TTC) solution and stained 
at 37°C for 10 min. Then, eroded the brain slices with standard saline 
three times. The TTC stained brain slices were mined with DMSO and 
ethanol (1:1) (20uL/mg) for 24 h in the dark, centrifuged for 5 min at 3000 
rpm. The supernatant was confirmed using a spectrophotometer (Thermo 
Fisher 1510) at 490 nm.[16]

Western blot analysis
The total protein extraction kit (Keygen Biotech. China) was employed 
to extract protein of mice brain slices, and the BCA protein analysis 
kit  (Keygen Biotech., China) was employed to assess the protein 
content. 10% SDS‑PAGE gel was used to detached the proteins, and 
then transferred the separated proteins to the PVDF membranes. The 
PVDF membranes were eroded three times with PBST and then blocked 
for 1 h in the PBST of 5% skimmed milk. The primary antibodies 
were incubated on the consistent position of membrane overnight 
at 4°C. The information of the primary antibodies was as follows: 
Caspase‑9  (1:1000), Caspase‑3  (1:500) and Caspase‑7  (1:500) were 
attained from Abcam. Bax  (1:300), Cytochrome c  (Cyt‑c)  (1:1000), 
Bcl‑2 (1:1000), and β‑actin (1:2000) were acquired from Cell Signaling 
Technology. Incubated the second antibodies on the position of the 
primary antibody for 2 h. The PVDF membranes were eroded three 
times with PBST before and after incubating the second antibody 
exposure of proteins with chemiluminescence reagent  (Thermo 
Fisher).

Statistical analysis
The data were accessible as the mean  ±  standard deviation, analyzed 
using one‑way ANOVA using SPSS17.0 software (IBM, USA). Significant 
differences were allotted P < 0.05.

RESULTS
Results of molecular docking
We employed molecular docking technology to envisage the 
possible target of Co anti‑apoptosis effect. The docking outcomes 

c
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Figure  1: Docking results of costunolide and apoptotic 
protein.  (a) Caspase‑9,  (b) Caspase‑7,  (c) Caspase‑3. The amino acids 
binding to costunolide were expressed as droplets. Abbreviations for 
amino acids are represented by capital letters. The numbers represent the 
numbering of amino acids in proteins. The line represents the costunolide 
is in the protein’s cavity. The arrow mark indicates hydrogen‑bonding 
interactions between costunolide and protein domain residues
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exposed a high affinity of Co towards Caspase‑9  (docking score 
4.2), Caspase‑7  (docking score 4.6), and Caspase‑3  (docking score 
3.9)  [Figure  1]. Caspase‑9 exhibited interactions with Co and 
Gly306, Leu307, Arg308, Yal292, Arg294, Asp297, Yal298, and 
Lys299 forming a hydrogen bond effect, Co and active site with 
residues Arg294 forms a hydrogen bond outcome. Caspase‑7 was 
found to be interacting with Co through Val226, Pro227, Tyr229, 
Lys160, Thr163, Ala164, Tyr223, and Phe221. Co and active site with 
residues Asn148 forms a hydrogen bond consequence. Co was found 
to be interacting with the Lys82, Leu81, Asn80, Lbu223, Lys224, 
Gln225, Ala227, and Asp228 residues of Caspase‑3 form a durable 
hydrophobic effect, Co and active site with residues Lys229 forms a 
hydrogen bond result.

Costunolide attenuated the release of lactate 
dehydrogenase
The more serious OGD/R persuaded cell injury, the more LDH was 
unconfined. The level of LDH augmented after OGD/R (P < 0.05). 
LDH release reduced after nimodipine  (10 μM) and Co  (1, 5 and 
10 μM) treatment  (P  <  0.05). However, there was no variance 
in the inhibition of LDH release between nimodipine and 
Co (P > 0.05) [Figure 2].

Costunolide increased the absorbance value of 
2,3,5‑triphenyl‑tetrazolium chloride dyeing
After TTC staining, the diminution of the absorbance value designated 
that the cell impairment is serious. The absorbance value of TTC 
dyeing in the OGD/R group diminished  (P  <  0.05). Co  (1, 5, and 10 
μM) and nimodipine  (10 μM) could upsurge the absorbance value 
ominously (P < 0.05) [Figure 3].

Costunolide enhanced Bcl‑2 and inhibited bax
After OGD/R injury, the content of Bax augmented and the 
content of Bcl‑2 lessened in mice brain slices. After interference 
with nimodipine  (10 μM) and Co  (1, 5 and 10 μM), the content 
of Bax in brain slices reduced, while the content of Bcl‑2 
augmented (P < 0.05) [Figure 4].

Costunolide inhibited cytochrome c, 
caspase‑9/‑3/‑7
After OGD/R injury, the expression of Caspase‑3, Caspase‑9, Caspase‑7, 
and Cyt‑c improved in mice brain slices (P < 0.05). After intervention 
with nimodipine (10 μM) and Co (1, 5, and 10 μM), the content of these 
proteins diminished (P < 0.05) [Figure 5].

DISCUSSION
Ischemic stroke has a high occurrence and great destructiveness. 
Outcome and researching drugs for treating ischemic stroke is the 
emphasis of research. There are many in  vitro and in  vivo models for 
the study of ischemic stroke.[17] However, the cultured cell experiment 
absences intercellular connection. The disadvantage of the in vivo model 
is that the stability of the model is deprived and the experimental measure 
is hefty. However, the brain slice model has the features of intercellular 
connection and stumpy dosage.[18,19] Therefore, we employed brain slices 
injury persuaded by OGD/R to mimic cerebral ischemia. Nimodipine 
may recover neurologic recovery and avert postischemic impairment 
of cerebral reperfusion in some patients with acute ischemic stroke.[20] 
Therefore, in our study, we picked nimodipine as a optimistic control 
drug.
LDH unconfined after cell membranes are interrupted.[21] Our results 
designated that OGD/R could rise the release of LDH from brain slices, 
which specified that the cell membrane was devastated. However, Co 
could decrease the level of LDH. TTC staining is a frequently used 
method to assess brain injury.[22] Our results show that Co could advance 
brain slices injury by growing the absorbance of TTC staining.
The pathophysiological mechanism of cerebral ischemia is very 
complex, which is still being considered.[23] Some researches disguised 
that apoptosis is required for cerebral ischemia and reperfusion.[24‑26] 
The Bcl‑2 family (such as Bax, Bcl‑2) is involved in regulating apoptosis 
in many nervous system ailments.[27] Bcl‑2 and Bax altered ominously 
in ischemic stroke.[28,29] The raised intracellular ratio of Bax to Bcl‑2 
befalls during cell apoptotic death.[30] In this study, OGD/R persuaded 
the diminution of Bcl‑2 and the increase of Bax in mice brain slices, 
which was reliable with earlier studies.[31] Bcl‑2 can upsurge the leakage 
of cytochrome c from mitochondria and induce apoptosis.[32] The level 

Figure  2: Costunolide  (Co) attenuated the release of lactate 
dehydrogenase. #P  <  0.05 versus control group, *P  <  0.05 versus 
Oxygen‑glucose deprivation/reoxygenation group

Figure  3: Costunolide  (Co) increased the absorbance value of 
2,3,5‑triphenyl‑tetrazolium chloride dyeing. #P  <  0.05 versus control 
group, *P  <  0.05 versus Oxygen‑glucose deprivation/reoxygenation 
group
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Figure 5: Costunolide (Co) attenuated the expression of Cytochrome c, Caspase‑9, Caspase‑3, Caspase‑7. The band of Cytochrome c, Caspase‑3, Caspase‑7, 
and Caspase‑9 (a) and quantitative analysis (b). #P < 0.05 versus control group, *P < 0.05 versus Oxygen‑glucose deprivation/reoxygenation group
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Figure 4: Costunolide (Co) enhanced Bcl‑2 and inhibited Bax. The band of Bax and Bcl‑2 (a) and quantitative analysis (b and c). #P < 0.05 versus control group, 
*P < 0.05 versus Oxygen‑glucose deprivation/reoxygenation group
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of cytochrome C was meaningfully augmented in the brain of rats with 
focal cerebral ischemia.[33] Caspase‑3 is an important executive factor 
of apoptosis, which is tangled in ischemic stroke.[34,35] In our study, Co 
could augment Bcl‑2 and inhibit Bax, Cyt‑c, Caspase‑3, Caspase‑7, 
and Caspase‑9 expression. It was recommended that Co could adjust 
mitochondrial apoptosis pathways in OGD/R‑induced mice brain slices.

CONCLUSION
Co can defend mice brain injury persuaded by OGD/R by inhibiting the 
expression of caspase.
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