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ABSTRACT
Background: Amomi fructus (AF) (a dried fruit of Amomum villosum Lour.) 
has been used in the treatment of digestive diseases such as abdominal pain 
and dysentery and in the prevention of abortion. The active ingredient of AF is 
its volatile oil. The volatile oil contains bornyl acetate and (1R,4R)‑(+)‑camphor, 
which are the primary active ingredients of AF that are analyzed for the 
quality assessment. Therefore, it is important to find an accurate and 
easy method to analyze the aforementioned volatile components of AF. 
Materials and Methods: In this study, 8 samples (A1–A4, B5 and B6, and 
C7 and C8) were collected and divided into Grades A, B, and C, respectively. 
The characteristics of volatile oils  (the aroma) in these samples were 
analyzed using an electronic nose (E‑nose) and a gas chromatography–mass 
spectrometry. In this study, we proposed a bionic olfactory system based on 
E‑nose technology combined with a convolutional neural network algorithm 
for component identification. This system can qualitatively evaluate AF from 
different quality grades and quantitatively predict the contents of the two 
aforementioned primary chemical components. Results: The accuracy of 
qualitative identification was over 95% for Grade A samples and over 90% 
for Grade B and Grade C samples. Discussion: Based on our identification 
of the quality, Grade A samples were detected with an accuracy of 86.7%. 
However, Grade B and C samples were identified with lower accuracies (80% 
and 73.3%, respectively). Conclusion: The identification of quality of AF was 
successfully evaluated by two primary volatile components: bornyl acetate 
and  (1R,4R)‑(+)‑camphor. The bionic olfactory system combined with an 
appropriate prediction model might be used as a potential quality control 
tool for Chinese herbal medicines.
Key words: Amomi fructus, bionic olfactory system, quality identification, 
quantitative analysis, volatile component

SUMMARY
•  In this article, a model based on E‑nose technology combined with a 

convolutional neural network (CNN) algorithm was proposed for the 
qualitative evaluation of different Amomi fructus (AF) grades and prediction 
of content of the two primary chemical components. From the experimental 
results, the following conclusions were drawn:

•  For qualitative identification, the identification accuracy of three different 
grades of AF was over 90%.

•  For quantitative analysis and quality identification, according to the analysis 

results of two main volatile components, bornyl acetate and (1r,4r)‑(+)‑
campho, the identifcation accuracy was 86.7%, 80%, and 73.3% for Grade 
A, B, and C samples, respectively.

•  It was revealed that the quality identification of AF could be evaluated by two 
main volatile components, bornyl acetate and (1r,4r)‑(+)‑campho

Abbreviations used: CHMs: Chinese herbal medicines; AF: Amomi fructus; 
GC‑MS: Gas chromatography–mass spectrometry; E‑nose: Electronic 
nose; PHWE: Pressurized hot water extraction; LPME: Liquid‑phase 
microextraction; HPLC: High‑performance liquid chromatography; CNN: 
Convolutional neural network; RSD: Relative standard deviation; RC: 
Relative content; PCA: Principal component analysis; NIST: National 
Institute of Standards and Technology; CAS: Chemical Abstracts 
Service; SD: Standard deviation;  (Rc) 2: Determination coefficient of 
calibration;  (Rp) 2: Determination coefficient of prediction; RMSEC: Root 
mean square of calibration; RMSEP: Root mean square error of prediction.
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INTRODUCTION
Amomi fructus (AF, called Sharen in Chinese) is a dry and mature fruit 
of the genus Amomum of the ginger family. The main species of AF 
include Amomum villosum Lour., AF Lour. var. xanthioides T. L. Wu et 
Senjen, or Amomum longiligulare T. L. Wu. As one of the most famous 
Chinese herbal medicines (CHMs), AF has been used in the treatment 
and prevention of digestive ailments such as abdominal pain and 
dysentery and in the prevention of abortion.[1‑3] The high medicinal value 
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of AF is mainly due to the presence of components in volatile oil such 
as bornyl acetate, (1R,4R)‑(+)‑camphor, borneol, D‑limonene, myrcene, 
and camphene. Among these, bornyl acetate and (1R,4R)‑(+)‑camphor 
account for more than 65% of the total content of the volatile oil in AF. 
These two ingredients have been approved as the quality standard of AF due 
to their significant effect on anti‑inflammatory, analgesic, and anticancer 
activity.[4‑6] Deng presented a sampling technique using pressurized hot 
water extraction combined with liquid‑phase microextraction to analyze 
the essential oil in AF samples from five different growing areas. He found 
that (1R,4R)‑(+)‑camphor and borneol acetate were the primary active 
ingredients of AF.[7] Dong identified different quality grades of AF by ten 
assessors, gas chromatography  (GC), and an electronic nose  (E‑nose). 
He found that the content of bornyl acetate was the most crucial index to 
distinguish the quality of AF.[8]

Aroma is an essential characteristic used in the determination 
of AF quality.[2] Therefore, volatile components are detected 
using conventional methods, such as high‑performance liquid 
chromatography and GC–mass spectrometry  (GC‑MS).[9‑11] 
Using headspace GC‑MS, seventy volatile components have 
been analyzed in AF samples. Among the components, bornyl 
acetate,  (1R,4R)‑(+)‑camphor, and borneol accounted for more 
than 70% of the total content of the volatile oil, and therefore, they 
play a significant role in identifying the AF from different growing 
areas.[12] Zou et  al. presented a method for quality evaluation of AF 
based on bornyl acetate and (1R,4R)‑(+)‑camphor content in different 
samples using GC‑MS and E‑nose.[13] Their results confirmed that 
bornyl acetate was one of the primary active components that can 
be used in quality assessment of AF. However, these widely used 
methods have disadvantages as being complex in operation and 
are time‑consuming.[14‑16] In recent years, bionic olfactory sensing 
systems (E‑nose) that are rapid, secure, and reliable have been proven 
to be promising tools for the quality assessment of CHMs.
E‑nose has been used in the food industry,[17,18] pharmaceutical 
industry,[19,20] environmental monitoring,[21] and so on. 
Mohammad‑Razdari et al. investigated a method to assess the quality 
of tomato paste using an olfactory machine system coupled with 
chemometric tools and found that an E‑nose system with TGS2610, 
MQ3, TGS2620, and TGS2600 sensors was effective in monitoring the 
adulteration of the paste.[22] Dong presented a new headspace integrated 
E‑nose combined with pattern recognition analysis to distinguish 
between 13 species of Chinese medicinal herbs. According to his 
results, there was a 100% classification rate. The bionic olfactory sensing 
system is suitable for the analysis of volatile compounds, especially for 
the volatiles of complex samples, such as medicine, food, and cosmetic 
industry.[23]

In this study, a grade identification system of AF was established based on 
E‑nose technology combined with a convolutional neural network (CNN) 
algorithm. In this study, we aimed to study the quantitative profiles and 
build a content prediction model for index components by comparing 
E‑nose and GC‑MS data. With this system, AF samples of unknown 
grade can be identified by quantitative analysis of composition and 
identification of grade based on aroma characteristics detected by E‑nose 
technology without the complicated and time‑consuming chemical 
compositional analysis. This study might propose a fast, reliable, and 
straightforward method for the quality control analysis of CHMs.

MATERIALS AND METHODS
Collection of study materials
AF (dried and mature fruit of A. fructus Lour.) samples were collected 
from four main growing locations: Guangdong, Yunnan, Guangxi, and 
Hainan provinces in China. The samples A1–A4, B5 and B6, and C7 and 

C8 were respectively labeled as Grades A, B, and C. This information 
was verified by B. H. and is listed in Table 1. All samples were harvested 
in October 2018 and dried at 30°C for 4 h in the same oven. They were 
collected by Z. L. (College of Traditional Chinese Medicine, Guangdong 
Pharmaceutical University) and were verified by B. H.  (College of 
Traditional Chinese Medicine, Guangdong Pharmaceutical University). 
Then, all samples were crushed into powder, filtered through No. 1 sieve, 
divided into two groups, and sealed. In order to ensure the accuracy of 
detection, we optimized the experimental conditions for E‑nose testing 
and GC‑MS analysis.

Electronic nose
In this study, we employed PEN3  (Airsense Analytics, Schwerin, 
Germany) to detect the odor characteristics of AF samples. PEN3 is 
made up of an automatic sampling device, an array of sensors, and a 
data processing system. It works as follows: (1) samples are heated and 
concentrated in the automatic sampling device; (2) during the detection, 
the volatile compounds react with the surface of the sensors, causing them 
to respond and output the signals; and (3) finally, signal preprocessing 
and data analysis are completed by the data processing system. Table 2 
shows the list of sensors and their characteristics of PEN3.
Before detection, PEN3 was first running for more than 60 min to ensure 
that all the sensors were heated up to the working temperature (above 
200°C) and the gas path was cleaned by clean air. Each sample was heated 
at 40°C and concentrated in the automatic sampling device, keeping for 
30 min. During detection, we set the chamber flow rate and injection flow 
rate at 150 mL/min. Each sample was continuously tested 10 times and 
each time we included the monitoring process (120 s, the measurements 
were recorded from 1 s to 120 s) and cleaning process (180 s).

Gas chromatography–mass spectrometry
Preparation of volatile oil
According to the General Principle 2204 given in Chinese 
Pharmacopoeia,[2] all samples were sliced, powdered, and sieved using 24 
meshes. Each sample was weighed (50 g) and extracted. The samples were 
extracted with ethyl ether as the solvent in a Soxhlet Extractor (SER148/6; 
VELP, Usmate Velate, Italy) for 5 h at 110°C–120°C. The solvent was 
extracted with 500 mL of water in a steam distillation for 10 h, and the 
yield rate was calculated using the following equation:

( )  1001

2

m
W % =  ×

m  (1)

where W is the yield rate, m1 is weight of the volatile oil, and m2 is 
the sample weight. The recovered volatile oil was diluted and further 
analyzed using GC‑MS.

Table 1: Labels and grades of Amomi fructus samples from different origins 
that harvested during October 2018

Sample label Origin Place Grades
A1 Xingfu village Guangdong province A
A2 Xin village Guangdong province A
A3 Mengla county Yunnan province A
A4 Mengla county Yunnan province A
B5 Ningming county Guangxi province B
B6 Xingfu village Guangdong province B
C7 Chengmai county Hainan province C
C8 Ningming county Guangxi province C
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Analysis of volatile components
Before conducting GC‑MS analysis, each volatile oil was diluted 
100  times with ethyl ether separately to obtain an effective GC‑MS 
spectrogram. We used a GC system  (Agilent 7890A, USA) equipped 
with HP‑5 capillary column (30 m × 250 μm × 0.25 μm film thickness) 
and MS system (Agilent 5975C, USA) for the analysis of volatile oil. The 
oven temperature was initiated at 60°C, held for 3  min, increased to 
130°C at 20°C/min, and again increased to 160°C at 5°C/min, held for 
10 min, and finally increased to 230°C at 20°C/min and held for 2 min. 
The temperature of the injector was maintained at 250°C, and helium 
was used as the carrier gas with a flow rate of 1.00 mL/min. The mass 
spectrometer was operated in electron bombardment ionization source 
mode, with the ionization temperature, the interface temperature, and the 
quadrupole temperature held at 230°C, 280°C, and 150°C, respectively. 
The quantity scanning range was set to 40–500 amu and the quantity 
scanning speed was held at 2.94 times/s.
Finally, each volatile oil was analyzed three times by GC‑MS within the 
same condition to calculate the average values of the relative standard 
deviation (RSD). The relative content of each volatile oil was calculated.

Data analysis
The E‑nose data analysis was conducted by bionic olfactory odor analysis 
software  (BOOAS version  2.0, Guangdong University of Technology, 
Guangzhou, China). The GC‑MS data analyzed each volatile oil by 
comparing the recorded mass spectra with the National Institute of 
Standards and Technology  (14.L) mass‑spectral library. Principal 
component analysis  (PCA) and CNN were used to analyze the odor 
differences of AF of different grades. CNN is a multi‑layer feedforward 
network trained by error backpropagation with deep structure. Its 
fundamental theory is to use translation, distortion, and scaling 
procedure to minimize the mean square error of the actual output value 
and the expected output value of the network using gradient search 
technology.[24,25] CNN has been one of the classical and widely used deep 
learning algorithms in many fields.[26]

The GenStat  (Version  18th, VSNC) and MATLAB  (version R2013a, 
MathWorks Inc., Natick, USA) software packages were employed to 
conduct the data analysis, including PCA and CNN.

RESULTS
E-nose sensor response
In this section, sensors’ response and qualitative analysis of AF samples 
based on PCA are discussed. Figure  1 shows all sensor responses for 
three phases of initialization (from 1 s to 5 s), changing (from 6 s to 40 s), 
and stabilization  (from 41 s to 120 s). In this figure, A1–A4 represent 
the responses of sensors to Grade A samples; B5 and B6 represent 
the responses of sensors to Grade B samples; C7 and C8 represent 
the responses of sensors to Grade C samples. The trend observed for 

A1–A4 samples is very similar which confirms that they belong to the 
same grade. However, the trend of Grade A response is different from 
that of Grades B and C. It can be seen that sensors S2 and S6–S9 show 
different values for Grade A, B, and C samples. It was found that despite 
the similarity of volatile components among different grades of AF 
samples, the concentration of bornyl acetate and (1R,4R)‑(+)‑camphor 
was varied according to the different grades of AF samples. This is 
demonstrated by the following GC‑MS component analysis.

Gas chromatography–mass spectrometry 
component analysis
Figure  2 and Table  3 show the presence of bornyl acetate 
and  (1R,4R)‑(+)‑camphor as identified by GC‑MS analysis. As 
listed in Table  3, the content of bornyl acetate in A1–A4  samples 
was, respectively, 51.24%, 50.17%, 49.52%, and 50.48%; the content 
of  (1R,4R)‑(+)‑camphor in A1–A4 samples was, respectively, 17.73%, 
18.48%, 17.85%, and 17.28%. Meanwhile, the content of bornyl 
acetate was more than 3.3 mg/g in A1, A2, A3, and A4  samples, 
which was in agreement with the evaluation indexes that the content 
of bornyl acetate shall not be  <  3.0 mg/g. The ratio of bornyl acetate 
to  (1R,4R)‑(+)‑camphor was more than 2.0 in Grade A of AF.[2,3] 
In addition, the content of bornyl acetate in B5, B6, C7, and C8 
was, respectively, 32.04%, 30.89%, 22.64%, and 18.85%; the content 
of  (1R,4R)‑(+)‑camphor in B5, B6, C7, and C8 was, respectively, 
10.76%, 11.38%, 7.14%, and 8.12% in C8. It is shown that both contents 
of bornyl acetate and (1R,4R)‑(+)‑camphor in Grade B and C samples 
were less than that of in Grade A samples. Thus, in all the tested volatile 
components, we found that bornyl acetate and  (1R,4R)‑(+)‑camphor 
were the primary active ingredients. Therefore, Chinese Pharmacopoeia 
2015 Edition[2] and literature[7,8] recommend checking the quality 
control of AF based on these two primary ingredients.

Principal component analysis
The qualitative analysis of AF from different grades was conducted by 
applying PCA to the E‑nose data. A total of 240 samples (30 samples of 
each group) were divided into two parts: 160 samples (20 samples of each 
group) for the training set and 80 samples (10 samples of each group) 
for the testing set. The 10‑fold cross‑validation was applied to evaluate 
the performance of the model. The dataset was randomly divided into 
10 subsets, where 9 out of the 10 subsets were used for training and the 
remaining one for testing. The cross‑validation process was repeated 
10 times. Thus, 10 identification accuracy rates were acquired, and the 
mean accuracy was calculated as the evaluation index. The results of 
the qualitative analysis of AF from different grades based on PCA are 
presented in Figure 3.

Table 2: The name and characteristics of each sensor in performance of electronic nose-3

Sensor number Sensor name Object substances for sensing Threshold value (mL/m3)
S1 W1C Aromatics 10
S2 W5S Nitrogen oxides 1
S3 W3C Ammonia and aromatic molecules 10
S4 W6S Hydrogen 100
S5 W5C Methane, propane, and aliphatic non‑polar molecules 1
S6 W1S Broad methane 100
S7 W1W Sulfur‑containing organics 1
S8 W2S Broad alcohols 100
S9 W2W Aromatics and sulfur‑ and chlorine‑containing organics 1
S10 W3S Methane and aliphatics 10
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DISCUSSION
Qualitative analysis
The qualitative analysis of AF as shown in the three‑dimensional spatial 
distribution plot of AF samples based on PCA [Figure 3] confirms that 
the first, second, and the third principal components demonstrated more 
than 91.39% of the total variance. Therefore, the samples of three selected 
grades of AF could be separated efficiently.
Table 4 shows the accuracy of identification of different AF grades. The 
identification accuracy of the training set was more than 95%, and the 
accuracy of the testing set was more than 90%. The results show that 
the characteristics of volatile components of Grade A samples were 
significantly different from those of Grade B and C samples. However, 
the difference between Grades B and C was negligible, which led to 
the low accuracy of identification [Table 3]. Figure 3 and Table 4 show 
the results of the analysis. According to our results, the performance 
of identification of different grades of AF samples based on E‑nose 
technology was accurate and reliable.

Quantitative prediction
Evaluation parameters
For further quantitative analysis of bornyl acetate 
and  (1R,4R)‑(+)‑camphor, we proposed a prediction model based on 
CNN regression models. Four most important parameters were used to 

evaluate the performance of the model: the square correlation coefficient 
of the training set  (determination coefficient of calibration  [Rc

2]), the 
square correlation coefficient of the testing set (determination coefficient 
of prediction [Rp

2]), the root mean square error of calibration (the root 
mean square error of the training set, RMSEC), and the root mean square 
error of prediction (the root mean square error of testing set, RMSEP). 
They were calculated according to the following equations.

∑
∑

1

1

n i i 2
c c2 i=1

c n i 2
c ci=1

(y ‑ f )
 (R )  = 1‑

(y ‑ y  )
 (2)

∑
∑
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n i i 2
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n
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∑
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i i 22
p p

i=12

1RMSEP = (y ‑ f )
n

 (5)

where i
cy and i

cf are the values obtained from the models during 

the training process and the values obtained from GC‑MS analysis, 
respectively; i

py and i
pf are the values obtained from the models 

Table 3: Relative content of two main volatile compounds (bornyl acetate and (1R,4R)-(+)-camphor of Amomi fructus from different labels identified by gas 
chromatography-mass spectrometry

CAS Compounds* Formula Relative content (%), mean±SD

A1 A2 A3 A4 B5 B6 C7 C8
5655‑61‑8 bornyl acetate C12H20O2 51.24±5.18 50.17±5.51 49.52±4.63 50.48±6.36 32.04±4.22 30.89±3.71 22.64±2.38 18.85±3.14
464‑49‑3 (1R,4R)‑(+)‑camphor C10H16O 17.73±2.08 18.48±2.45 17.85±3.04 17.28±2.47 10.76±2.29 11.38±3.62 7.14±1.73 8.12±2.81

*Compounds identified via GC‑MS analysis based on comparison with the retention indices and the mass spectra of standard compounds (similarity≥90% was 
listed). CAS: Chemical Abstracts Service; SD: Standard deviation; GC‑MS: Gas chromatography‑mass spectrometry

Figure 1: Sensors’ response to the selected Amomi fructus samples for different grades. G0 and G represent the electronic conductivity of the sensors when 
detecting clean air and the Amomi fructus samples, respectively. (A1), (A2), (A3), and (A4) represent responses of Grade A samples; (B5) and (B6) represent 
responses of Grade B samples; (C7) and (C8) represent responses of Grade C samples
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during the testing process and the value obtained from GC‑MS 
analysis, respectively; i i

c p c p 1y   and y   are the mean values of y  and y ; n is 

equal to 20 (20 samples in the training set of each group); and n2 is equal 
to 10 (10 samples in the testing set of each group). Thus, if the values 
obtained from the CNN model are close to those values analyzed by 
GC‑MS, the higher values for the Rc

2 and Rp
2 as well as the lower values 

for RMSEC and RMSEP would be obtained. Therefore, for a superior 
regression model, it is aimed to achieve a high correlation coefficient (Rp) 
and a low RMSEP for testing.

Convolutional neural network prediction model 
training
Compared with some traditional algorithms, CNN is an artificial 
neural network with a deep structure, which is one of the first classical 
and widely used deep learning algorithms.[26] CNN has a strong non‑
linear mapping ability and good adaptability. It is a feedforward 
neural network, which consists of an input layer, hidden layer, and 
output layer. The hidden layer includes convolution layer, pooling 
layer, and full connection layer. CNN can solve non‑linear problems 
and present superior performance in comparison with other neural 
networks.[27]

In this study, CNN regression model was set up to predict the contents of 
bornyl acetate and (1R,4R)‑(+)‑camphor in AF samples. It was designed 
as seven layers: one input layer, two convolution layers, two subsampling 
layers (called pool layer), one full connection layer, and one output layer. 

Figure 2: Analysis of odor components: bornyl acetate and (1R,4R)-(+)-camphor generated by gas chromatography–mass spectrometry from A2 sample: (a1) 
and  (b1) were mass spectrometry of peak 1 and peak 2 in the National Institute of Standards and Technology 14.L library compared with the mass 
spectrometry of the bornyl acetate and (1R,4R)-(+)-camphor standard, separately; (a2) and (b2) were the bornyl acetate and (1R,4R)-(+)-camphor standards, 
the gas chromatography–mass spectrometry chromatogram of compounds of bornyl acetate and (1R,4R)-(+)-camphor, separately

Figure  3: Qualitative analysis of Amomi fructus from different grades 
based on principal component analysis.  (A1),  (A2),  (A3), and  (A4) were 
Grade A samples; (B5) and (B6) were Grade B samples; (C7) and (C8) were 
Grade C samples
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In the convolution layer and pool layer, which were interleaved, the 
sigmoidal function was used for convolution layer activation function. 
The sigmoid function is given as follows:

( ) ‑x

1g x  = 
1+ e  (6)

where x is the input value.
Before training the model, all data were divided into two parts: 
160  samples  (20  samples of each group) for the training set, which 
was applied to determine the optimal prediction model, and 
40  samples  (5  samples of each group) for the testing set, which was 
used to evaluate the predictive performance of the model. The E‑nose 
data were used as independent variables, and the contents determined 
by GC‑MS were used as dependent variables. These variables were 
introduced into the model as input and output variables. In order to 
ensure that the CNN model can be fully trained and limit the training 
time, we introduced criteria to stop training when the number of training 
iterations is more than 500, and the total error of the last 100 training 
iterations is <0.01. Finally, at the end of the training, the parameters of 
the best CNN prediction model were as follows: α = 0.023  (learning 
rate), β = 25 (batch size, the number of training samples for input each 
time), and n = 2300 (training times), which showed that all parameters 
in CNN network were automatically adjusted to a perfect condition, and 
then, the CNN prediction model was constructed. Finally, the evaluation 
parameters, Rc

2, Rp
2, RMSEC, and RMSEP, were calculated [Table 5].

According to Table 5, the predicted results (for bornyl acetate – Rc
2 = 0.914 

and RMSEC = 0.962 in training set and Rp
2 = 0.893 and RMSEP = 1.046 

in testing set and for  (1R,4R)‑(+)‑camphor  –  Rc
2  =  0.907 and 

RMSEC = 1.027 in training set and Rp
2 = 0.884 and RMSEP = 1.109 in 

testing set) were found to be satisfied. The results demonstrated that 
the CNN model could perfectly predict the contents of bornyl acetate 
and (1R,4R)‑(+)‑camphor in AF samples.

Identification of different grades
Based on the prediction values, the following three evaluation parameters 
were proposed in the identification of qualitative assessment and grading 
of AF samples: prediction content of bornyl acetate  (a), prediction 
content of (1R,4R)‑(+)‑camphor (b), and the ratio of prediction content 
of bornyl acetate to prediction content of  (1R,4R)‑(+)‑camphor  (λ). 
Table 6 shows the specific settings of each parameter.
After the CNN prediction model finished training, sixty unknown 
samples were selected to evaluate the predictive performance of the 

model according to the evaluation parameters listed in Table 6. Figure 4 
and Table 7 show the results.
According to Figure  4, we clearly differentiated the three different 
grades of AF samples. Based on our analysis, 26  samples were 
identified as Grade A and 4  samples were identified as Grade B. 
The contents of bornyl acetate for Grade B were below 45% (a <45) 
and the content of  (1R,4R)‑(+)‑camphor in one sample was below 
15% (b <15). In 15 Grade B samples, 12 were identified as Grade B and 
3 samples were identified as Grade C. The contents of bornyl acetate 
in two samples of Grade C were below 25% (a <25) and the content 
of (1R,4R)‑(+)‑camphor in one sample was below 10% (b < 10); in 15 
Grade C samples, 11 were identified as Grade C and 4 samples were 
identified as Other because of the contents of bornyl acetate were 
below 15% (a <15) and the contents of (1R,4R)‑(+)‑camphor were 
below 5% (b <5). Figure 4 shows that it is reasonable and reliable to 
identify the quality grade of AF according to the contents of bornyl 
acetate and (1R,4R)‑(+)‑camphor predicted by the CNN model. It is 
further clarified that bornyl acetate and (1R,4R)‑(+)‑camphor are the 
common factors which contribute to the aroma of AF, indicating that 
these two compositions might weigh more in differentiating.
As listed in Table  7, the Grade A samples were easy to identify than 
that of the other two grades. The accuracy of identification for Grades 
A, B, and C was 86.7%, 80%, and 73.3%, respectively, which means that 
the Grade A samples possess a significantly different concentration of 
bornyl acetate and (1R,4R)‑(+)‑camphor. Figure 4 and Table 7 confirm 
that good quality AF samples contained higher concentrations of bornyl 
acetate and (1R,4R)‑(+)‑camphor, whereas low‑quality AF samples emit 
lower concentrations of volatile compounds.
Given the complexity of the sample pretreatment, the time‑consuming 
procedures during the measurement, and the amount of data analysis 
and the cost, we propose that E‑nose technology might be a good 
alternative in determining the quality and grading of AF samples. The 

Table 4: Identification of accuracy of different Amomi fructus grades and sample labels

Sample label Training set Testing set

Number of 
samples

Correctly 
identified samples

Accuracy (%) Number of 
samples

Correctly 
identified samples

Accuracy (%)

A (A1‑A4) 80 79 98.8 40 38 95
B (B5, B6) 40 38 95 20 18 90
C (C7, C8) 40 40 100 20 18 90

Table 5: Quantitative analysis and volatile component identification based on 
convolutional neural network

Volatile constituents Training set Testing set

(Rc) 2 RMSEC (Rp) 2 RMSEP
bornyl acetate 0.914 0.962 0.893 1.046
(1R,4R)‑(+)‑camphor 0.907 1.027 0.884 1.109

(Rc) 2: Determination coefficient of calibration; (Rp)
2: Determination coefficient 

of prediction; RMSEC: Root mean square of calibration; RMSEP: Root mean 
square error of prediction

Figure  4: Identification results for unknown Amomi fructus samples of 
different grades based on convolutional neural network prediction model
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Table 7: Identification results of different Amomi fructus grades based on 
convolutional neural network prediction model

Grades A B C
Number of unknown samples 30 15 15
Correctly identified 26 12 11
Accuracy (%) 86.7 80 73.3

Table 6: Evaluation parameters for different quality grades of Amomi fructus

Content of bornyl acetate (%) (a) Content of (1R,4R)‑(+)‑camphor (%) (b) Ratio of bornyl acetate to (1R,4R)‑(+)‑camphor (λ) Result
a≥45 b≥15 λ ≥2.5 A
45>a≥25 15>b≥10 2.5> λ ≥2.0 B
25>a≥15 10>b≥5 2.0> λ ≥1.5 C
a<15 b<5 λ <1.5 Other

CNN prediction model might show the concentrations of separated 
volatile compounds, which can help explain the inner causes from 
a chemical viewpoint. Therefore, the prediction system of volatile 
components based on E‑nose technology might be a simple and reliable 
method for determining AF grade. In addition to improving the 
accuracy of grading identification of AF, it is necessary to integrate other 
information‑processing technologies, such as the electronic tongue, in 
future studies.

Repeatability of electronic-nose and gas 
chromatography–mass spectrometry
In this study, the repeatability of PEN3 was evaluated by applying five 
parallel measurements of A2  samples and the GC‑MS method was 
executed using B5 samples. In the E‑nose case, the RSD of the relative 
peak area and the relative retention time were both  <1.70%, whereas 
the RSD of volatile components was 1.90% via GC‑MS analysis. These 
results show that both methods had good repeatability.

CONCLUSION
In this study, a model based on E‑nose technology combined with a 
CNN algorithm was proposed for the qualitative evaluation of different 
AF grades and prediction of content of the two primary chemical 
components (i.e., bornyl acetate and (1R,4R)‑(+)‑camphor). The detailed 
profiles of the two components were used to distinguish different quality 
grades of AF. The performance of the model was verified using four 
statistical parameters: Rc

2, Rp
2, RMSEC, and RMSEP.

1. For the qualitative identification, the accuracy of identification of the 
training set and the testing set was, respectively, 98.8% and 95% for 
Grade A samples, 95% and 90% for Grade C samples, and 100% and 
90% for Grade C samples. It was found that the results of accuracy 
test of qualitative analysis based on E‑nose technology were higher

2. For the quantitative prediction, the contents of bornyl acetate 
and  (1R,4R)‑(+)‑camphor were predicted based on E‑nose data 
combined with CNN algorithms. The prediction results of Rc

2 were 
over 0.90 and of Rp

2 were over 0.884, which was reliable and better 
than previous work[13]

3. For the quality grade identification, Grade A samples were identified 
better than the other two grades. The identification accuracy was 
86.7%, 80%, and 73.3% for Grade A, B, and C samples, respectively

4. It was confirmed that good quality AF samples contained higher 
concentrations of bornyl acetate and (1R,4R)‑(+)‑camphor, whereas 
low‑quality samples had lower concentrations.

Finally, we can conclude that the CNN‑based prediction model using 
E‑nose technology is a robust, reliable, and nondestructive approach 
for determining AF grades and predict the contents of their critical 

aroma components, offering an alternative method for future studies on 
intelligent monitoring and quality control for CHMs.
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