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ABSTRACT
Background: Human African trypanosomiasis is one of the most 
serious neglected tropical diseases causing fatal symptoms and death. 
Natural products are a main source for anti-infective metabolites. 
Objectives: The objective of the study is to evaluate eight different 
plants belonging to the Kalanchoe species growing in Egypt for 
antitrypanosomal, antimalarial, antileishmanial, cytotoxic, and antimicrobial 
activities. Materials and Methods: The antitrypanosomal activity against 
Trypanosoma brucei; cytotoxic activities against human colon carcinoma, 
human hepatocyte carcinoma, and human breast adenocarcinoma cell 
lines; antileishmanial activity against Leishmania donovani; antimalarial 
activity against Plasmodium falciparum; and antimicrobial activities of all 
plant extracts have been examined.  As well as the identification of the 
secondary metabolites for the most active extract was performed via ultra 
performance liquid chromatography coupled to high resolution quadrupole 
time of flight mass spectrometer operated in negative and positive ionization 
modes. Results: Among the examined plant extracts, Kalanchoe longiflora 
leaves extract showed promising activity against T. brucei with an inhibition 
concentration of sample at 50% fall in absorbance (IC50) value of 17.6 µg/
mL. K. longiflora with other extracts exhibited promising cytotoxic activities. 
Profiling of the polar secondary metabolites of K. longiflora revealed the 
presence of 47 metabolites including 31 flavonoids, 9 phenolic acids, 4 
anthocyanidins, 2 chalcone glucoside, and 1 coumarin. To determine the 
mechanism of action of K. longiflora extract as a potent antitrypanosomal 
and cytotoxic agent, we investigate its ability to inhibit topoisomerase I 
enzyme. K. longiflora extract showed an excellent activity with an IC50 value 
of 0.148 µg/mL. Conclusion: These interesting results open the door for 
further research aiming at the development of a successful treatment for 
Trypanosoma from K. longiflora.
Key words: African trypanosomiasis, antitopoisomerase I, 
cytotoxic, Kalanchoe, ultra-performance liquid chromatography/
quadrupole-time-of-flight mass spectrometer

SUMMARY
•  Biological investigation of Kalanchoe species growing in Egypt showed 

both antitrypanosomal and cytotoxic activities at which the responsible 
secondary metabolites for these activities were identified using advanced 

chromatographic analysis method, and quantification of the most valuable 
chemical classes was done for confirmation and explaining of these activities.

Abbreviations used: HCT-116: Human colon carcinoma; HEPG-2: Human 
hepatocyte carcinoma; MCF-7: Human breast adenocarcinoma; IC50 
value: The inhibition concentration of sample at 50% fall in absorbance; 
Topo I: Topoisomerase I; Topo II: Topoisomerase II; HDAC: Histone 
deacetylase; WHO: World Health Organization; ESI: Electrospray 
ionization; RT: Retention time; UPLC/QTOF-MS/MS: Ultra-performance 
liquid chromatography/quadrupole-time-of-flight mass spectrometer; 
DMSO: Dimethyl sulfoxide; IMDM: Iscove’s modified Dulbecco’s medium; 
FBS: Fetal bovine serum; KEGG: Kyoto Encyclopedia of Genes and Genomes; 
a.m.u.: Atomic mass unit; Rham.: Rhamnose; 
Glu.: Glucose.
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INTRODUCTION
Human African trypanosomiasis or sleeping sickness is one of the most 
serious neglected tropical diseases.[1] The protozoan, Trypanosoma 
brucei, is the cause of human African trypanosomiasis through the 
bites of a tsetse fly (Glossina species).[2] According to the World Health 
Organization, T. brucei is endemic in 37 African countries causing fatal 
symptoms and death. These symptoms happen due to the ability of 
the parasite to multiply inside the human body, cross the blood–brain 
barrier, and attack the central nervous system directly.[3] The number of 
reported deaths in 2015 because of African trypanosomiasis was 3500.[4] 
In spite of these scary numbers, human African trypanosomiasis is still 
one of the neglected tropical diseases.[5]

Natural products reported as a source for anti‑infective metabolites, 
either isolated from plants,[6] marine natural products,[7] or endophytic 
fungal sources.[8,9] Kalanchoe species belongs to family Crassulaceae  (a 
family of 34 genera and 1410 species).[10] The genus Kalanchoe was 
established for the first time by Michel Adanson  (1763), comprising 
125 species.[11] Kalanchoe species were used extensively in different 
traditional medicines in many regions, especially Africa, China, India, 
and Brazil.[12] The antiprotozoal activity of different plants belonging to 
Kalanchoe species has been well documented.[13‑15]

An important link had been emphasized between the antiprotozoal 
and the cytotoxic activities through different mechanisms, such as 
inhibition of histone deacetylase  (HDAC) enzyme.[16] Antiprotozoal 
and cytotoxic activities were also exhibited by several synthetic 
compounds.[17‑19] In addition, several natural products exhibited 
anticancer and antitrypanosomal activities, such as camptothecin and 
rebeccamycin, which were found to have the potential to inhibit the 
activity of topoisomerase I causing an arrest of the proliferation of 
cancer cells and Trypanosoma cruzi.[20] These findings prompted us to 
examine the cytotoxic activities for these plant extracts against human 
colon carcinoma (HCT‑116), human hepatocyte carcinoma (HEPG‑2), 
and human breast adenocarcinoma (MCF‑7) cell lines.
Topoisomerases are important nuclear enzymes playing a vital role 
in DNA replication, transcription, chromosome segregation, and 
recombination.[21] There are two types of topoisomerases: topoisomerase 
I  (Topo I) and topoisomerase II  (Topo II). Topo I is responsible for 
cleavage, relaxing, and releasing of one strand of the DNA duplex, 
while Topo II cleaves DNA helix simultaneously to remove DNA 
supercoiling.[22] Accordingly, topoisomerases are considered as 
important targets for cancer chemotherapy treatments.[23] Topoisomerase 
inhibitors block the ligation step of the cell cycle, generating 
single‑stranded and double‑stranded breaks that harm the integrity of 
the genome.[24] In addition, Topo I is considered a suitable target for 
antiprotozoal chemotherapy. Camptothecin has been examined and 
exerted great activity against trypanosomes and Leishmania through the 
inhibition of Topo I, leading to the promotion of protein–DNA adducts 
formation and inhibition of DNA synthesis.[25]

The profiling of plant’s secondary metabolites using different mass 
spectrometric techniques has been progressively applied for medicinal plants 
analysis.[26] The ultra‑high‑performance liquid chromatography‑quadrupole 
time‑of‑flight mass spectrometry (UHPLC/QTOF‑MS) technique is a 
recent approach in the field of chromatography. It has the advantage of being 
fast, sensitive, and high‑resolution separation technique.[27]

The initial impetus for the present study is to find out an effective 
treatment for a serious African disease using some African plants 
belonging to the Kalanchoe sp. In addition, exploring the mechanism 
of action and the chemical profile of the most active plant’s extract are 
among our goals in this study.

MATERIALS AND METHODS
Plant material and extraction
Kalanchoe delagoensis, Kalanchoe daigremontiana, Kalanchoe 
grandiflora, Kalanchoe longiflora, Kalanchoe marmorata, Kalanchoe 
orgyalis, Kalanchoe thyrsiflora, and Kalanchoe tubiflora were collected 
and identified by Botanical team of Al‑Orman Botanical Garden, Giza, 
Egypt, on January 2017  [Figure  1]. A  voucher specimen  (K‑101 to 
K‑108) has been deposited in the Pharmacognosy Department, Faculty 
of Pharmacy, Al‑Azhar University, Cairo, Egypt. Samples of 10 g fresh 
leaves were prepared for extraction through cutting by a mixer. The cut 
plants exhaustively extracted with 70% ethanol and sonicated at 30 kHz 
for 30 min. Then, the samples were filtered; the marc was re‑extracted 
3  times as described before. The collected extracts were filtrated and 
dried under reduced pressure at 40°C.

Antitrypanosomal assay
A 2‑day‑old culture of T. brucei in the exponential phase was diluted to 
5000 parasites/mL with Iscove’s modified Dulbecco’s medium (IMDM) 
according to the described protocol.[28] The maximum permissible 
limit of dimethyl sulfoxide (DMSO) in the assay was 0.5%. The assays 
were set up in clear 96‑well microplates. For primary screening (single 
concentration of 20 µg/mL in duplicate), extract dilutions  (1 mg/mL) 
were prepared from the stock extracts  (20 mg/mL) in IMDM. Each 
well received 4 µL of diluted extract sample and 196 µL of the culture 
volume (total culture volume 200 µl). The plates were incubated at 37°C 
in 5% CO2 for 48 h. Alamar blue (10 µl) (AbD Serotec, Catalog Number 
BUF012B) was added to each well, and the plates were incubated further 
for overnight. Standard fluorescence was measured on a Fluostar Galaxy 
fluorometer  (BMG LabTechnologies) at 544 nm excitation and, 590 
nm emission. Pentamidine and α‑difluoro methyl ornithine  (DFMO) 
were tested as standard. The extracts that have shown >90% inhibition 
of T. brucei growth in primary screening were subjected to secondary 
screening for dose‑dependent–response analysis. Active extracts were 
screened at concentrations ranging from 10 to 0.4 µg/mL. The inhibition 
concentration of sample at 50% fall in absorbance (IC50) and IC90 values 
were computed from dose‑dependent–response growth inhibition curve 
by  XLfit version 5.2.2.

Antileishmanial assay
The antileishmanial activity of the crude extracts, fractions, and isolated 
metabolites was tested in vitro against a culture of Leishmania donovani 
promastigotes using pentamidine and amphotericin B as positive 
controls.[29]

Figure 1: Figures of Kalanchoe species
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Antimalarial assay
Crude extracts and fractions were tested on chloroquine‑sensitive (D6, 
Sierra Leone) and chloroquine‑resistant  (W2, Indo‑china) strains of 
Plasmodium falciparum based on plasmodial lactate dehydrogenase 
activity  (LDH) activity using previously reported method; artemisinin 
and chloroquine have been used as positive controls.[30]

Antimicrobial assay
The antimicrobial activity of different extracts was screened for their 
ability to inhibit a panel of five bacteria and five fungi.  Those bacteria 
and fungi are pathogenic to humans including Staphylococcus  aureus, 
methicillin‑resistant S. aureus  (MRSA), Escherichia coli, Pseudomonas 
aeruginosa, Mycobacterium intracellulare, Candida albicans, Candida 
glabrata, Candida krusei, Aspergillus fumigatus, and Cryptococcus 
neoformans. The antimicrobial assay was carried out according to 
previously reported method using ciprofloxacin and amphotericin B as 
positive controls.[30,31]

Cytotoxic assay
Antiproliferative activity screening was carried out against three cancer 
cell lines  (HCT‑116, HEPG‑2, and MCF‑7 cell lines). The anticancer 
activity was measured quantitatively using the neutral red assay protocol 
as described by Borenfreund and Puerner.[32] Briefly, the cell lines were 
cultured in DMEM  (Lonza group) supplemented with 200 mM of 
L‑glutamine and 10% of fetal bovine serum (FBS). The test compounds 
were dissolved in a mixture of DMSO and DMEM with ratio 4:100 (v/v), 
respectively. An initial dose of  (1 mg/mL) was tested on different cell 
lines and sub sequenced by seven more dilutions using two‑fold dilution 
factor. Cells were seeded with a concentration of (6 × 104 cell/mL) for 
24 h in the flat bottom 96‑well plates and incubated at 37°C with 5% CO2 
until semi‑confluent cell layer was obtained and then treated with 100 µL 
of each of serially diluted compounds. After 48 h, the anticancer activity 
of the compounds was measured quantitatively by an ELISA microplate 
reader at a wavelength of 540 nm using neutral red assay protocol.

Topoisomerase I assay
Kit components
Item specifications (48T/96T) storage
This kit was based on sandwich enzyme‑linked immune‑sorbent assay 
technology. Anti‑TOP1  antibody was precoated onto 96‑well plates 
and the biotin‑conjugated anti‑TOP1 antibody was used as detection 
antibodies. The standards, test samples, and biotin‑conjugated detection 
antibody were added to the wells subsequently and washed with wash 
buffer. HRP streptavidin was added, and unbound conjugates were 

washed away with wash buffer. TMB substrates were used to visualize 
HRP enzymatic reaction. TMB was catalyzed by HRP to produce a 
blue color product that changed into yellow after adding acidic stop 
solution. The density of yellow is proportional to the TOP1 amount of 
sample captured in plate. Read the optical density absorbance at 450 
nm in a microplate reader and then the concentration of TOP1 can be 
calculated.

Liquid chromatography-mass spectrometry/mass 
spectrometry
Chemicals
LC‑MS grade acetonitrile and gradient solvents including isopropanol, 
methanol, dichloromethane, and ethyl acetate were provided by 
Thermo‑Fisher  (Thermo Fisher Scientific, USA). Formic acid 98%, 
ammonium hydroxide, ammonium formate, and ammonium acetate 
were purchased from Sigma‑Aldrich (Sigma‑Aldrich Co., Louis St., MO, 
USA).

Instruments and acquisition method
Separation of small molecules was carried out on an Axion AC 
system (Kyoto, Japan) connected with an autosampler system, an In‑Line 
filter disks precolumn (0.5 µm × 3.0 mm, Phenomenex, USA), and an 
Xbridge C18 (3.5 µm × 2.1 mm × 50 mm) column (Waters Corporation, 
Milford, MA, USA) maintained at 40°C and a flow rate of 300 µL/min. 
The mobile phase consisted of solution (A) 5 mM ammonium formate 
in 1% methanol, adjusted to pH = 3.0 using formic acid and solution (B) 
acetonitrile 100% for the positive mode, while the negative mode 
solution  (C) consisted of 5 mM ammonium formate in 1% methanol, 
adjusted to pH = 8.0 using ammonium hydroxide.
MS was performed using Triple TOF™ 5600+  system equipped with 
a Duo‑Spray™ source operating in the electrospray ionization  (ESI) 
mode (AB SCIEX, Concord, Canada). Subsequently, the top 15 intense 
ions were selected for acquiring MS/MS fragmentation spectra after each 
scan.[33]

Data processing
MS‑DIAL 3.70 software (Yokohama, Kanagawa, Japan)[34] was used for 
non‑targeting small molecule comprehensive analysis of the sample. 
According to the acquisition mode, ReSpect‑positive  (2737 records) 
or ReSpect‑negative  (1573 records) databases were used as reference 
databases. The identified compounds were retrieved for the pathway 
analysis using Kyoto Encyclopedia of Genes and Genomes  (KEGG)[35] 
to investigate the integration of different molecule in the plant metabolic 
pathways.

Table 1: Cytotoxic activities of the examined plants using different cell lines

Plant species HCT-116
IC50 (µg/ml)

HEPG-2
IC50 (µg/ml)

MCF-7
IC50 (µg/ml)

Kalanchoe tubiflora 42.71±1.3 45.51±1.2 43.26±0.78

Kalanchoe daigremontiana 10.55±0.87 9.17±1.1 11.48±0.79

Kalanchoe grandiflora 20.55±1.2 17.41±1.5 18.24±0.64

Kalanchoe marmorata 21.57±1.3 17.27±0.58 20.23±0.47

Kalanchoe orgyalis 34.52±0.94 31.45±0.76 30.17±1.21

Kalanchoe longiflora 22.45±1.45 23.14±1.2 19.22±2.15

Kalanchoe thyrsiflora 25.43±0.55 22.55±0.75 20.54±1.51

Kalanchoe delagoensis 41.57±0.75 40.81±1.21 39.59±0.89
HCT‑116: Human colon carcinoma; HEPG‑2: Human hepatocyte carcinoma; MCF‑7: Human breast adenocarcinoma; IC50 value: The inhibition concentration of 
sample at 50% fall in absorbance
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RESULTS AND DISCUSSION
Antiprotozoal assay
The eight Kalanchoe sp. extracts examined for antitrypanosomal, 
antileishmanial, and antimalarial activities. K. longiflora leaves extract only 
exhibited its activity against T. brucei with an IC50 value of 17.6 µg/mL.

Antimicrobial assay
The plant extracts were evaluated for their antibacterial and antifungal 
activities against C. albicans, C. glabrata, C. krusei, A. fumigatus, Cryptococcus 
neformans, S. aureus, MRSA, E.  coli, and P. aeruginosa. Unfortunately, 
neither one of the tested plant extracts showed any promising activity.

Cytotoxic assay
The well‑proven relation between antiprotozoal and cytotoxic activities 
prompted us to examine the cytotoxic activities of the plant extracts 
against HCT‑116, HEPG‑2, and MCF‑7 cell lines. Several plant extracts 
exhibited good activities, against the tested cell lines [Table 1].

Topoisomerase I inhibitory activity
The most active antitrypanosomal extract (K. longiflora) was evaluated 
for its inhibitory activity against Topo I enzyme. Staurosporine was 
used as a positive control in this procedure. The results were recorded 
as an IC50 calculated from the concentration–inhibition response curve. 
Topo I was efficiently inhibited by K. longiflora ethanolic extract which 
displayed excellent inhibitory activity with an IC50 value of 0.148 µg/mL. 
The inhibitory activity of staurosporine was very near to K. longiflora with 
an IC50 value of 0.135 µg/mL [Figure 2]. This result was consistent with 
that of in vitro antitrypanosomal and cytotoxic activities of K. longiflora 
ethanolic extract. This result indicates that the expected mechanism 
of action of K. longiflora ethanolic extract as an antitrypanosomal and 
cytotoxic agent is due to its ability to inhibit Topo I enzyme.

Profiling of Kalanchoe longiflora secondary 
metabolites via ultra-performance liquid 
chromatography–quadrupole-time-of-flight mass 
spectrometer
The valuable biological effects of K. longiflora ethanolic extract prompted 
us to identify its phytochemical profile through non‑targeted profiling 

method using ultra‑performance liquid chromatography  (UPLC) 
coupled with a high‑resolution quadrupole‑time‑of‑flight mass 
spectrometer (QTOF‑MS) operated in the negative and positive 
ionization modes [Figures  3 and 4]. The extract was analyzed in 
both positive and negative‑ion ESI MS modes to avoid any change in 
competitive ionization and suppression effects due to the changes in ESI 
polarity can often circumvent or significantly alter, revealing otherwise 
suppressed metabolite signals.
In total, 30 peaks from K. longiflora ethanolic extract were identified 
based on their negative‑ionization mass spectral data versus 17 in 
the positive‑ion mode [Table 2 and Figure 5]. A total of 47 secondary 
metabolites were detected and identified. Metabolites belonged to 
several natural product classes including 31 flavonoids, nine phenolic 
acids, four anthocyanidins, one coumarin, one chalcone glycoside, and 
one dihydrochalcone glucoside.

Identification of flavonoids
The flavonoid glycosides resort to generate  [M−H]− ions more 
than [M+H]+ ions. In their MS/MS spectra, losses of glycosyl moieties 
in both negative‑  and positive‑ion mode could be observed as well 
as their major characteristic fragment ions due to retro‑Diels‑Alder 
fragmentation pathway [Figure 5]. In case of O‑flavone glycosides, the 
common losses of 132, 146, 162, and 176 a.m.u indicated the losses of 
pentose (arabinose or xylose), rhamnose, hexose (glucose or galactose), 
and hexuronic acid, respectively. Furthermore, flavonoids tended to 
lose 28 a.m.u.  (CO), 18 a.m.u  (H2O), and 15 a.m.u  (CH3), suggesting 

0.125

0.13

0.135

0.14

0.145

0.15

K. longiflora ethanolic extract Staurosporine

Topo I inhibitory activity (µg/ml) 

Figure  2: Topoisomerase I inhibitory activity of K. longiflora ethanolic 
extract against staurosporine

Figure 3: Base peak chromatogram (BPC) of Kalanchoe longiflora ethanolic extract in negative electrospray ionization mode



MOSTAFA M. HEGAZY, et al.: Antitrypanosomal activities of Kalanchoe species

10 Pharmacognosy Magazine, Volume 17, Issue 73, January-March 2021

Table 2: Peak annotations of metabolites in Kalanchoe longiflora ethanol extract using ultra-performance liquid chromatography-quadrupole time-of-flight 
mass spectrometry in negative and positive ionization modes

Peak RT 
(min)

MS [-] MS/MS m/z MS [+] MS/MS 
m/z

Chemical 
formula

Error 
(ppm)

Tentative assignment Compound 
type

References

1 0.46 191 [M‑H‑Caffe]−, 
173 [M‑H‑Caffe‑

H2O]−

‑ C16H18O9 5.4 Chlorogenic acid Phenolic ester [36]

2 0.48 173.0095 [M‑H]−, 
154 [M‑H‑H2O]−, 

129
[M‑H‑CO2]

−

‑ C7H10O5 0.2 (‑)‑Shikimic acid Phenolic acid [37]

3 0.54 ‑ 319.0345 [M+H]+, 
291 [M+H‑CO]−, 
273 [M+H‑H2O‑

CO]−

C15H10O8 1 Myricetin Flavonol [38]

4 0.62 ‑ 303.083 [M]+ C15H11O7
+ 2.6 Delphinidin Anthocyanidin [39]

5 0.65 153.0305 [M‑H]−, 
125 [M‑H‑CO]−, 
109 [M‑H‑CO2]

−

‑ C7H6O4 10.2 Gentisic acid Phenolic acid [40]

6 0.69 163.0402 [M‑H]−, 
119 [M‑H‑CO2]

−
‑ C9H8O3 0.4 p‑coumaric acid Phenolic acid [38]

7 0.73 181.1218 [M‑H]−, 
135 [M‑H‑CO2]

−
‑ C9H8O4 0.1 Caffeic acid Phenolic acid [41]

8 1.06 301.0011 [M‑H]−, 
257 [M‑H‑H2O‑

CO]+

‑ C15H10O7 −2.6 Quercetin Flavonol [42]

9 1.10 449.1088 [M‑H]−, 
287 [M‑H‑glu]−

‑ C21H22O11 0.8 Isookanin‑7‑glucoside 
(Flavanomarein)

Flavone 
glycoside

[43]

10 1.14 289.0739 [M‑H]−, 
271 [M‑H‑

H2O]+,123 [1,2B]+

‑ C15H14O6 −3.5 Cianidanol (catechin) Flavanol [36]

11 1.19 137.0244 [M‑H]−, 
109 [M‑H‑CO]−, 
94 [M‑H‑ H2O‑

CO]+

‑ C7H6O3 1 Salicylic acid Phenolic acid [40]

12 1.61 609.1513 [M‑H]−, 
447 [M‑H‑Glu]−, 
285 [M‑H‑2Glu]−

‑ C27H30O16  −5.8 Luteolin‑3’,7‑di‑O‑
glucoside

Flavone 
glycoside

[44]

13 2.53 593.1527 [M‑H]−, 
447 [M‑H‑p‑

coumaroyl]−, 285 
[M‑H‑3‑O‑(6‑p‑
coumaroyl)‑Glu]−

‑ C30H26O13 −0.9 Tiliroside (kaempferol‑
3‑O‑(6””‑p‑coumaroyl)‑
glucoside)

Flavonol 
glycoside

[45]

14 2.75 285 [M‑H‑H2O]−, 
257 [M‑H‑H2O‑
CO]−, 193 [M‑H‑

Bring]−, 179 [1,4B], 
153 [1,3A], 149 

[0,2A]

‑ C15H12O7 −2 (±)‑Taxifolin Flavanonol [42]

15 2.76 285.0402 [M‑H]− ‑ C15H10O6 0.5 Kaempferol Flavonol [46]
16 2.76 433.1152 [M‑H]−, 

271 [M‑H‑Glu]−
‑ C21H22O10  −2.1 Prunin (naringenin‑7‑O‑

glucoside)
Flavanone 
glycoside

[47]

17 2.89 ‑ 611.1614 [M]+, 465 
[M‑Rham]+, 303 
[M‑Rham‑Glu]+

C27H31O1
+ 0.1 Tulipanin Anthocyanidin 

glycoside
[48]

18 2.89 385.1862 [M‑H]−, 
223 [M‑H‑Glu]−, 
205 [Sinapic acid‑

H‑H2O]−

‑ C17H22O10 1.6 1‑O‑sinapoyl‑beta‑
d‑glucose (1‑o‑b‑d‑
glucopyranosyl sinapate)

Phenolic 
glycosides

[49]

19 2.89 359.1272 [M‑H]− ‑ C18H16O8  −3.7 Rosmarinic acid Phenolic ester [36]
20 3.14 177.0201 [M‑H]− ‑ C9H6O4 −2.4 Esculetin 

(6,7‑dihydroxycoum‑
arin)

Coumarin [50]

Contd...
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Table 2: Contd...

Peak RT 
(min)

MS [-] MS/MS m/z MS [+] MS/MS 
m/z

Chemical 
formula

Error 
(ppm)

Tentative assignment Compound 
type

References

21 3.34 ‑ 433.0999 [M+H]+, 
415 [M+H‑H2O]+, 

397 [M+H‑
2H2O]+, 361 

[M+H‑4H2O]+, 
295 [M+H‑120‑

H2O]+,

C21H20O10 −1 Vitexin Flavone
C‑ glycoside

[51]

22 3.41 463.0895 [M‑H]−, 
301 [M‑H‑Glu]−

‑ C21H20O12 −0.6 Quercetin‑4’‑glucoside 
(Spiraeoside)

Flavonol 
glycoside

[44]

23 3.52 593.1537 [M‑H]−, 
447 [M‑H‑rham]−, 

285[M‑H‑
rutinose]−

‑ C27H30O15 −1.7 Datiscin (Datiscetin‑3‑
O‑rutinoside)

Flavonol
glycoside 

[52]

24 3.53 ‑ 595.1642[M+H]+, 
449 [M+H‑
Rham]+, 287 

[M+H‑ rutinose]+

C27H30O15 −0.5 Nicotiflorin (kaempferol‑
3‑O‑rutinoside)

Flavonol 
glycoside

[53]

25 3.53 ‑ 449.108 [M+H]+, 
303 [M+H‑Rham]+

C21H20O11 −0.6 Vincetoxicoside b 
(quercetin‑7‑O‑
rhamnoside)

Flavonol 
glycoside

[53]

26 3.69 ‑ 285.1099 [M+H]+ C16H12O5 −0.6 Acacetin Flavone [53]
27 3.97 591.136 [M‑H]− ‑ C28H32O14 −1 Acacetin‑7‑O‑rutinoside Flavone 

glycoside
[54]

28 4.04 ‑ 287.0545 [M+H]+, 
269 [M+H‑H2O]+, 

241 [M+H‑H2O 
‑CO]−

C15H10O6 −1 Luteolin Flavone [42]

29 4.06 577.1539 [M‑H]−, 
431 [M‑H‑

Rham]−, 285 
[M‑H‑2Rham]−

‑ C27H30O14 3.9 Kaempferol‑3,7‑O‑bis‑
alpha‑L‑rhamnoside

Flavonol 
glycoside

[49]

30 4.41 ‑ 741.2239 [M+H]+, 
595 [M+H‑
Rham]+, 433 

[M+H‑robionse‑
Rham]+, 287 

[M+H‑ robionse]+

C33H40O19 −0.2 Robinin (kaempferol‑
3‑O‑robinoside‑7‑O‑
rhamnoside)

Flavonol 
glycoside

[55]

31 4.70 ‑ 209.1358 [M+H]+, 
181 [M+H‑CO]+

C11H12O4 0.8 Sinapyl aldehyde Phenolics [53]

32 4.80 431.099 [M‑H]−, 
285 [M‑H‑
2Rham]−

‑ C21H20O10 −0.2 Kaempferin 
(Kaempferol‑3‑O‑
alpha‑L rhamnoside)

Flavonol 
glycoside

[38]

33 4.84 435.129 [M‑H]−, 
273 [M‑H‑Glu]−

‑ C21H24O10 1.3 Phlorizin Dihydro 
chalcone 
glycoside

[39]

34 5.20 287.0586 [M‑H]−, 
287 [M‑H]−, 151 

[1,3A]−

‑ C15H12O6 −3.8 Eriodictiol (3’ 4’ 5 
7‑tetrahydroxyflavanone)

Flavanone [56]

35 5.26 447.0944 [M‑H]−, 
301 [M‑H‑Rham]−

‑ C21H20O11 −0.9 Quercitrin Flavonol 
glycoside

[53]

36 5.54 ‑ 597.254 [M]+ C26H29O16
+ 2.3 Delphinidin‑3‑O‑

sambubioside
Anthocyanidin 
glycoside

[48]

37 5.71 ‑ 433.1832 [M+H]+ C21H20O10  1.1 Kaempferol‑7‑O‑
rhamnoside

Flavonol 
glycoside

[38]

38 6.28 271 [M‑H]−, 151 
[1,3A]−, 177 [M‑H‑

B‑ring]−.

‑ C15H12O5 −0.3 Naringenin Flavanone [42]

39 6.52 269.0459 [M‑H]−, 
151 [M‑H‑

C8H6O]−, 117 
[M‑H‑C8H6O]−, 

107 [M‑H‑
C6H3O2]

−

‑ C15H10O5 0 Apigenin Flavone [42]

Contd...
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the existence of phenolic hydroxyl and methyl groups, thus allowing the 
characterization of the flavonoid subgroups.[46,58]

Among 47 different peaks, flavonoids represented the most 
abundant class in K. longiflora, with 31 peaks. Seventeen of them 
were tentatively assigned to flavonol subclass. The presence of 
seven characteristic parent ion peaks in positive‑  and negative‑ion 
mode at 741.2239  [M+H]+, 595.1642  [M+H]+, 593.1527  [M−H]−, 
577.1539  [M−H]−, 433.1832  [M+H]+, 431.099  [M−H]−, 
299.0595 [M−H]−, and 285.0402 [M−H]−, corresponding to kaempferol 
and its glycosides  [Table  2]. However, quercetin and its glycosides 
assigned to four characteristic parent ion peaks at 463.0895  [M−H]−, 
449.108 [M+H]+, 435.1984 [M+H]+, and 301.0011 [M−H]− [Table 2]. In 
addition, parent ion peaks for myricetin, quercetin, and isorhamnetin 
have been observed. Furthermore, nine flavones ion peaks such as 
apigenin at 269.0459  [M−H]−, vitexin at 431.0999  [M−H]−, acacetin 
at 285.1099  [M+H]+, acacetin‑7‑O‑rutinoside at 591.136  [M−H]−, 
luteolin and its glycosides at 609.1513 [M−H]−, 449.1561 [M+H]+, and 

287.0545 [M+H]+ have been recorded. Further, other subclasses, three 
metabolites belonging to flavanone (prunin, eriodyctiol, and naringenin), 
1 isoflavone (puerarin), and 1 flavononol (taxifolin), have been detected.
Several scientific reports indicated the antiprotozoal activity of 
kaempferol,[59] which was one of the most three active flavonoids as 
antiamoebic and antigiardial agent among 18 natural flavonoids.[59] 
Furthermore, kaempferol and its glycosides were reported before to 
have antileishmanial activity.[60,61] Quercetin was described as a potent 
antileishmanial flavonoid[61] and proved to induce apoptosis of T. brucei 
previously.[62] In fact, different flavonoids exhibited antiprotozoal 
activities, for instance, fisetin, 3‑hydroxyflavone, luteolin, and 
quercetin showed promising activities against T. cruzi with IC50 values 
of 0.6, 0.7, 0.8 and 1.0 µg/mL, respectively.[63] Sakuranetin, which is 
a flavonoid isolated from the leaves of Baccharis retusa  (Asteraceae), 
exhibited good activities against different species of Leishmania with 
IC50 values in the range of 20–52 µg/mL.[64] As well as some flavonoids 
isolated from the aerial parts of Dodonaea viscosa  (Sapindaceae) 

Table 2: Contd...

Peak RT 
(min)

MS [-] MS/MS m/z MS [+] MS/MS 
m/z

Chemical 
formula

Error 
(ppm)

Tentative assignment Compound 
type

References

40 6.77 299.0595 [M‑H]−, 
284 [M‑H‑CH3]

−, 
256 [M‑H‑CH3‑

CO]−

‑ C16H12O6  0.4 Kaempferide (3 5 
7‑trihydroxy‑4’‑
methoxyflavone)

Flavonol [42]

41 7.03 315.0518 [M‑H]−, 
300 [M‑H‑CH3]

‑ C16H12O7 −0.9 Isorhamnetin 
(3’‑methoxy‑4’,5,7‑
trihydroxyflavonol)

Flavonol [42]

42 10.84 ‑ 435.1984 [M+H]+ C20H18O11 1.4 Guaijaverin (quercetin‑3‑
arabinoside)

Flavonol 
glycoside

[53]

43 12.67 ‑ 449.1561 [M+H]+, 
431 [M+H‑ H2O]+, 

413 [M+H‑
2H2O]+,395 

[M+H‑3H2O]+,

C21H20O11 2.7 Orientin (luteolin‑8‑C‑
glucoside)

Flavone 
glycoside

[51]

44 17.73 ‑ 449.1252 [M]+, 287 
[M‑glucose]+

C21H21O11 3.9 Kuromanin (cyanidin‑3‑
glucoside)

Anthocyanin 
glycoside

[48]

45 2.36 449.1082 [M‑H]−, 
169, 150

‑ C21H22O11 2.2 Marein (Okanin‑4’‑O‑
glucoside)

Chalcone 
glycoside

[43]

46 7.79 ‑ 287.1501 [M+H]+, 
269 [M+H‑ H2O]+

C16H14O5 −2.1 Sakuranetin 
(4’,5‑dihydroxy‑7 
methoxyflavone)

Flavone [42]

47 3.53 ‑ 417.1524 [M+H]+ C21H20O9 0.2 Puerarin (daidzein‑8‑C‑
glucoside)

Isoflavone [57]

MS: Mass spectrometry; RT: Retention time

Figure 4: Base peak chromatogram (BPC) of Kalanchoe longiflora ethanolic 
extract in positive electrospray ionization mode Figure 5: Fragmentation pattern of flavonol
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exhibited antileishmanial activities with IC50 value ranging from 16.6 
to 19.06 µg/ml.[65]

The well‑documented antiprotozoal activities of flavonoids, besides the 
detection of a high content of flavonoids (especially, these which reported 
for antiprotozoal effects) in K. longiflora ethanolic extract, suggested that 
the promising antitrypanosomal activity of K. longiflora may be linked 
to its flavonoid content.

Identification of phenolic acids
Phenolics are a group of secondary metabolites processing different 
types of promising biological activities.[66] Phenolic acids are commonly 
reported metabolites in most of the profiling studies of medicinal plants. 
Phenolic acids produced generally precursor ion [M−H]− corresponding 
to deprotonated molecule and fragment ion [M‑H‑44]− corresponding 
to loss of CO2 from the carboxylic acid group.[65] In this study, nine 
phenolic acids were identified including 2 esterified  (chlorogenic acid 
and rosmarinic acid), 1 phenolic glycoside (1‑O‑sinapoyl‑β‑D‑glucose), 
and 6 free  (shikimic acid, gentisic acid, p‑coumaric acid, caffeic acid, 
salicylic acid, and sinapyl aldehyde).
The antitrypanosomal activity of phenolic acids was discussed before, 
for example, gallic acid  (the famous plant phenolic) exhibited good 
antitrypanosomal activity against T. brucei with an LD50 value of 46.9 µM.[67]

The presence of phenolic acids in K. longiflora extract in high 
concentrations may contribute its antitrypanosomal activity.

Other metabolites
The chemical profiling of K. longiflora extract revealed the presence 
of four anthocyanidins including delphinidin  (aglycon) and 3 other 
glycosides (tulipanin, kuromanin, and delphinidin‑3‑O‑sambubioside), 1 
dihydroxycoumarin (esculetin), 1 dihydrochalcone glucoside (phlorizin), 
and 1 chalcone glycoside (marein) as shown in Figure 6.

CONCLUSION
The ethanolic extract of K. longiflora leaves exhibited promising 
antitrypanosomal activity against T. brucei with an IC50 value of 
17.6 ug/ml. In addition, it showed promising cytotoxic activities against 
HCT‑116, HEPG‑2, and MCF‑7 cell lines. Chemical profiling of the 

polar secondary metabolites in K. longiflora via UPLC coupled to 
high‑resolution QTOF‑MS operated in negative and positive ionization 
modes resulted in tentative identification of 47 metabolites including 31 
flavonoids, 9 phenolic acids, 4 anthocyanidins, 1 coumarin, 1 chalcone, 
and 1 dihydrochalcone glucoside. The proposed mechanism of action 
of K. longiflora extract as antitrypanosomal and cytotoxic agent may be 
through its ability to inhibit Topo I enzyme (IC50 value of 0.148 µg/ml).
These interesting results open the door for further research aiming 
at the development of a successful treatment for Trypanosoma from 
K. longiflora.
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