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ABSTRACT
Background: Leukemia is a cancer of the hematopoietic stem cells, 
which leads to an uncontrolled proliferation of leukocytes in blood. It is 
responsible for one of the most important cancer‑associated deaths 
across the globe. Materials and Methods: In this study, we analyzed 
whether dieckol  (DEK), a polyphenolic compound obtained from brown 
algae, can suppress cell proliferation via regulation of JAK/STAT3 signaling 
pathway in leukemia cell lines (Molt‑4). Results: According to our results, 
DEK induced cytotoxicity, altered the cell morphology, caused nuclear 
damage, enhanced the formation of reactive oxygen species, decreased 
the production of mitochondrial membrane potential, reduced the levels 
of antioxidants (reduced glutathione, catalase, and superoxide dismutase), 
and augmented the level of thiobarbituric acid reactive substances in 
Molt‑4 cell lines. Furthermore, STAT3 has been recognized as an important 
transcriptional mediator that controls cell proliferation. Thus, suppression 
of STAT3 transcription is a novel approach for the suppression of Molt‑4 
cell proliferation. In this study, DEK inhibited STAT3 translocation, thereby 
suppressing the increased expression of cyclin E1, PCNA, cyclin D1, and 
JAK1 in Molt‑4 cell lines. Conclusion: In summary, DEK suppressed 
the cell proliferation of Molt‑4 cells via inhibition of JAK/STAT3 signaling 
pathway.
Key words: Cell proliferation, dieckol, JAK/STAT3 signaling, leukemia, 
Molt‑4 cells

SUMMARY
•  Oncogenic transcriptional mediator of STAT3 is the major target for the 

management of leukemia
•  DEK suppresses leukemia cell growth and proliferation via suppression of 

JAK/STAT3 signaling pathway in Molt‑4 cells.

Abbreviations used: DEK: Dieckol; DOX: Doxorubicin; SOD: Superoxide 
dismutase; MMP: Mitochondrial membrane potential; ROS: Reactive 
oxygen species.
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INTRODUCTION
Leukemia is a cancer of the hematopoietic stem cells that leads to 
uncontrolled proliferation of leukocytes in blood. It is one of the most 
important cancer‑associated deaths across the globe.[1,2] The abnormal 
accumulation of immature T‑lymphoblast leads to cancer formation and 
uncontrolled proliferation of the myeloid cells in the bone marrow.[3] 
Leukemia accounts for nearly 5% of all the cancers and ranks sixth among 
the different human malignancies. It is a common childhood neoplasm 
resulting in the death of around 30% of the children and adolescents 
under age of 14 years.[4]

Conventional therapies such as chemotherapy, surgery, radiation, and 
immune therapy have limited success in curing leukemia; therefore, 
there is an urgent need for alternative approaches in cancer treatment. 
Therefore, efforts are being made to obtain natural anticarcinogens 
that could slow, reverse, or even prevent cancer development. Plants 
play a significant role in the treatment of carcinogenesis.[5] Some of the 
plant‑derived drugs comprise more than 50% of all the anticancer drugs 
in the market. Many investigational studies have tested conventional 
plants in an attempt to obtain new curative drugs that have less toxic side 

effects.[6] One such compound is dieckol  (DEK), a polyphenolic agent 
obtained from brown algae Ecklonia cava.[7] It shows anti‐inflammatory, 
antihyperlipidemic, anti-aging, antineurodegenerative, antitumor, 
antiallergic, and antidiabetic activity.[8,9] Furthermore, it suppresses 
human hepatic, breast, and ovarian carcinoma cell proliferation.[10‑12]

Oncogenic transcriptional mediator of STAT3 has been frequently 
targeted for the management of leukemia. JAK biomarkers are 
frequently found to be mutated in proliferative neoplasms that are 
responsible for the constitutive stimulation of JAK/STAT3 signaling 
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pathway.[13] This, in turn, leads to uncontrolled cell proliferation by 
increasing the levels of key transcriptional proteins containing cyclins 
D1 and E1 and PCNA, which are involved in the regulation of cell 
cycle.[14] Thus, inhibition of JAK/STAT3 signaling pathway has been 
regarded as the central target in cancer therapy.[15] So far, no studies 
have reported on the suppression of JAK/STAT3 signaling pathway by 
DEK in leukemia. Therefore, in this study, we aimed to examine the 
role of DEK in the suppression JAK/STAT3 signaling on leukemia cell 
lines (Molt‑4).

MATERIALS AND METHODS
Reagents and cell culture
DEK, doxorubicin  (DOX), and 3‑(4,5‑dimethyl‑2‑thiazolyl)-
2,5‑diphenyltetrazolium bromide  (MTT) were procured from 
Sigma‑Aldrich Co., Ltd. Antibodies for cyclins D1 and E1, PCNA, 
JAK1, and STAT3 were obtained from Cell Signaling Technology. 
Human leukemia cell line (Molt‑4) was cultured in RPMI‑1640 medium 
supplemented with 10% fetal bovine serum and antibiotics (streptomycin, 
penicillin, and ampicillin 100 units/mL each) in a humidified atmosphere 
with 5% CO2 at 37°C.

Cytotoxic assay and morphological study
The cytotoxic effects of DEK on Molt‑4 cells were analyzed via 
MTT analysis. Briefly, Molt‑4 cells were cultured in 24‑well 
plates  (1  ×  104 cells/well) at 37°C for 24 h. After 24 h, different 
concentrations of DEK (5, 10, 20, 40, 80, and 160 µM) were added to 
the culture medium and incubated for 24 h. Then, the medium was 
removed and 10 µL of 0.5 mg/mL MTT solution was added to all the 
wells and incubated for the next 4 h. The formazan crystals formed were 
dissolved by the addition of 100 µL of dimethyl sulfoxide and finally the 
absorbance was measured at 570 nm using an ELISA plate reader, USA. 
In addition, the morphology of Molt‑4 cells was observed by the phase 
contrast microscope, USA.[16]

Analysis of acridine orange/ethidium bromide 
staining
Molt‑4 cells were seeded in 6‑well plates (0.6 × 106 cells/well) and were 
incubated at 37°C for 24 h. Then, DEK (40 and 80 µM) and DOX were 
added and the cells were again incubated for 24 h. After incubation, 
10 μL of cell culture medium was loaded on the glass slide and the cells 
were stained using acridine orange/ethidium bromide  (AO/EB). The 
cells were covered with a cover slip and observed under the fluorescent 
microscope (NIKON Eclipse 80i, Japan).[17]

Estimation of reactive oxygen species and 
measurement of mitochondrial membrane 
potential
Molt‑4 cells were incubated at 37°C for 24 h. After this, various 
concentrations of DEK  (40 and 80 µM) and DOX were added and 
again incubated for 24 h. After that, the media was decanted and 5 µM 
of 2,7‑dichlorofluorescein diacetate  (DCFH‑DA) dye was added to 
estimate the amount of reactive oxygen species (ROS) formed. For the 
measurement of mitochondrial membrane potential  (MMP), Rh‑123 
was added and the changes were investigated under the laser scanning 
confocal microscope (NIKON Eclipse 80i, Japan).

Assays of lipid peroxidation and antioxidants
Molt‑4 cells were added at different concentrations (40 and 80 µM) 
of DEK and DOX and incubated at 37°C for 24 h. Then, the cells 

were washed, lysed, and centrifuged at 12000 rpm (15 min) at 4°C. 
The supernatant was used to estimate the parameters responsible 
for oxidative stress. The level of superoxide dismutase  (SOD) 
was investigated by the method described by Kakkar 
et  al.[18] The concentration of glutathione  (GSH) was estimated by 
the method of Ellman  (1959).[19] The thiobarbituric acid reactive 
substances  (TBARS) were measured by the method described by 
Ohkawa et al.[20] Finally, the catalase (CAT) levels were determined 
by the method described by Sinha.[21]

Western blot analysis
Cells were grown for 24 h and DEK (40 and 80 µM) and DOX were added 
to the wells and incubated at 37°C for 24 h. Then, the cells were lysed with 
RIPA buffer as explained previously.[22] Proteins (40 µg) were separated 
using sodium dodecyl sulfate‑polyacrylamide gel electrophoresis 
technique and the separated proteins were transferred onto 
polyvinylidene fluoride membranes. Then, the proteins were blocked 
with skimmed milk (5%) in TBST and incubated with particular primary 
antibodies (cyclins D1 and E1, PCNA, JAK1, and STAT3) for overnight 
at 4°C. Afterward, the membranes were incubated with secondary 
antibodies for 2 h at room temperature (RT). Protein bands were observed 
using enhanced chemiluminescence detection kit (Bio‑Rad, USA).

Statistical analysis
The data were analyzed as mean ± standard deviation. Statistical analysis 
was conducted using the  GraphPad Prism 8 software (San Diego, CA, 
USA). We performed analysis of variance and Tukey’s test as a post hoc 
analysis. The differences in mean were found to be significant if P < 0.05.

RESULTS
Effect of dieckol on the inhibition of Molt‑4 cell 
proliferation and morphological changes
Cell viability of Molt‑4 cells was assessed after treating the cells with 
DEK at different concentrations  (5, 10, 20, 40, 80, and 160 µM) 
via MTT assay  [Figure  1]. According to the results, DEK caused 
a dose‑dependent decrease in the cell number  (IC50  =  80 µM); 
therefore, for further experiments, we selected a concentration of 40 
and 80 µM. In addition, we examined the morphological changes 
using the phase contrast microscope. In contrast to the control cells, 
DEK (40 and 80 µM) and DOX‑treated cells exhibited marked changes 

Figure  1: The cytotoxic effect of dieckol on Molt‑4 cells was measured 
by 3‑(4,5‑dimethyl‑2-thiazolyl)‑2,5‑diphenyltetrazolium bromide assay. 
Figure 1 proves the significant cytotoxicity of dieckol against the Molt‑4 
cells. Among the different concentrations  (5–160 µM), the 80 µM of 
dieckol was inhibited 50% of cell growth (IC50)
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in the cellular morphology, such as reduced cell density and condensed 
cell shape [Figure 2].

Effect of dieckol on the morphology of apoptotic 
cells by acridine orange/ethidium bromide staining
We detected the fluorescence of the apoptotic cells by performing AO/
EB staining  [Figure  3]. According to the results, untreated control 
cells did not display any red/yellow fluorescence, which shows that 
there was no apoptosis and nuclear damage. However, cells that were 
treated with 40 and 80 µM of DEK and DOX revealed red/yellow 
fluorescence, which points toward the initiation of the apoptotic 
pathway.

Determination of reactive oxygen species in Molt‑4 
cells
The effect of DEK (40 and 80 µM) on the production of ROS in Molt‑4 
cells was analyzed via fluorescence microscopy [Figure 4]. According to 
our results, DEK significantly augmented the levels of ROS in Molt‑4 
cells. Control cells revealed low levels of ROS in Molt‑4 cells. DOX also 
enhanced the production of ROS compared to the control cells.

Effect of dieckol on mitochondrial membrane 
potential levels in Molt‑4 cells
The effect of DEK  (40 and 80 µM) on the Molt‑4 cells was analyzed 
by fluorescence microscopy  [Figure  5]. According to the results, DEK 
caused a substantial reduction in the MMP levels of Molt‑4 cells. Control 
cells revealed enhanced levels of MMP in Molt‑4 cells. DOX treatment 
also decreased the levels of MMP in comparison to the control cells.

Effect of dieckol on lipid peroxidation and 
antioxidant levels
The effect of DEK on the levels of antioxidants such as SOD, GSH, 
and CAT and lipid peroxidation indicators such as TBARS was 
estimated  [Figure  6]. TBARS levels were found to be decreased and 
SOD, GSH, and CAT levels were increased in Molt‑4 cells. In contrast, 
compared to the control cells, there was a high level of TBARS and low 
levels of SOD, GSH, and CAT in DEK‑ (40 and 80 µM) and DOX‑treated 
Molt‑4 cells.

Effect of dieckol on protein expression
In order to recognize the molecular mechanisms responsible for the 
reduction in cell proliferation, we measured the proteins that are 
essential for these biological functions  [Figures  7 and 8]. We found 
that the expression of STAT3, JAK1, PCNA, and cyclins D1 and E1 was 
downregulated after incubating the Molt‑4 cells with DEK (40 and 80 µM) 
and DOX. However, their expression was found to be upregulated in 
control cells.

DISCUSSION
Nowadays, researchers are interested in nutritional and remedial 
phytochemical derivatives from natural sources as a healthy alternative 
for the detection of novel anticancer drugs.[23] DEK is an anticancer 
drug, which inhibits cell proliferation of various types of cancer cells. 
Cell viability of Hep3B cells was found to be downregulated after DEK 
treatment, with an IC50 value ranging between 80 and 100 μM.[24] 
Another study has confirmed that DEK reduces cell viability in SKVO3 
cells with an IC50 range of 80–120 μM.[12] Herein, we confirmed that DEK 
inhibited the proliferation of Molt‑4 cells in a dose‑dependent manner. 
We also confirmed morphological analysis and nuclear damage by dual 
staining. The phase contrast micrographic image demonstrates that DEK 
can reduce cell density and alters the cellular shape. The morphological 
changes are mainly induced by the excessive production of intracellular 
ROS. This result coincides with a previous research.[24] Another study 
reported that DEK suppressed cell proliferation and nuclear damage in 
Hep3B cells.[25]

The mitochondrion is one of the central imperative organelles in 
controlling cell death in addition to other indicator in apoptosis.[26] ROS 
are molecules with unpaired valence shell electrons and are therefore 
called as free radicals; they are extremely active and cause a significant 
amount of oxidative damage to the cell.[27] Increased levels of ROS 
are considered to be responsible for causing cell death. According to 
our results, DEK increased the levels of ROS in Molt‑4 cells. Loss of 
MMP inhibits cell proliferation and causes apoptotic cell death.[28] 
Modification of MMP in DEK‑treated Molt‑4 cells might be due to 
the failure in the production of ATP, which leads to either necrosis or 
apoptosis.[29] In this study, depleted levels of MMP and elevated levels 
of ROS show that DEK stimulated apoptosis in Molt‑4 cells. These 
results are in accordance with previous reports that DEK inhibited 
cell proliferation by increasing the ROS formation and decreasing the 
levels of MMP in SKOV3 cell lines.[12] Oxidative stress is explained as 
an imbalance between the formation of ROS and reduced antioxidant 
defense systems.[30] This imbalance can lead to mutagenesis or even 
lead to cell death and increased levels of cell proliferation regarding 
of its quantities were evaluated to antioxidants such as SOD, CAT, and 
GSH in the cells. It has been reported that an imbalance in the levels 
of intracellular ROS can provoke cell cycle arrest and suppression of 
cell proliferation.[31] In this study, increased level of TBARS and reduced 
antioxidant levels were recorded after incubating the cells with DEK. 
Similar results have been reported by Sivagami et  al.[32] after treating 
with HT‑29 cells with hesperetin.
Normally, the overexpression of STAT3 leads to the activation of key 
transcription proteins responsible for proliferation. The activated 
STAT3 has been implicated in the cell survival and proliferation in 
leukemia.[33‑35] In this study, STAT3 and JAK1 protein expression was 
notably downregulated at increased levels of DEK. These genes might 
be the primary target to stimulate apoptosis in leukemic cells.[36] In a 

Figure 2: Dieckol suppresses the proliferation of Molt‑4 cells. Cellular morphology was viewed under a phase contrast microscope. The treatment with the 
80 µM of dieckol was significantly inhibited the cell viability of Molt‑4 cells, as seen in the doxorubicin treatment
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previous study, DEK inhibited the activation and nuclear translocation 
of STAT1 in HaCaT cells, which supports our data.[37] Uncontrolled 
cell proliferation can be stimulated by altered expressions of protein 
associated with the cell cycle. So far, several anticancer drugs have 
demonstrated to induce apoptosis in cancer cells via blocking of cell 
proliferation and cell cycle arrest.[38] Cyclin D1 is one of important 
controllers of cell cycle development. Cyclin E1 and PCNA are key 
markers of proliferation including in leukemia. These markers have 
been reported to be overexpressed in various cancer cell lines.[39‑42] In 
this study, we found that DEK downregulated the expression of cyclins 
D1 and E1 and PCNA in Molt‑4 cells. Previous studies also reported 
that DEK downregulated the expression of these mediators in 3T3‑L1 
preadipocytes[43] and A549 cells.[44] These data explain the anticancer 
potential of DEK against leukemia; however, additional research is still 
needed to find the exact therapeutic potential of DEK.

CONCLUSION
In this study, we observed that DEK induced cytotoxicity, altered cell 
morphology, damaged nuclear integrity, enhanced ROS production, 

Figure  6: Dieckol enhanced lipid peroxidation and modulate cellular 
antioxidant status in Molt‑4 cells. The data represent mean  ±  standard 
deviation of triplicate, *P < 0.05 and #P < 0.01  as compared with the 
control group. Catalase‑mM of hydrogen peroxide consumed per minute. 
Superoxide dismutase‑enzyme concentration required for 50% inhibition 
of nitroblue tetrazolium reduction in 1 min. Glutathione‑mg/dl

Figure 5: The effect of dieckol on mitochondrial membrane potential status 
was determined in Molt‑4 cells using Rh‑123 staining.  (a) Fluorescence 
microscopic image for dieckol on the status of mitochondrial membrane 
potential.  (b) Percentage of mitochondrial membrane potential was 
detected by spectrofluorometer. The data represent mean  ±  standard 
deviation of triplicate, *P < 0.05 and #P < 0. 01 as   compared with the 
control group

Figure  4: The effect of dieckol on intracellular ROS generation was 
determined in Molt‑4 cells using 2,7‑dichlorofluorescein diacetate 
staining. (a) Fluorescence microscopic image for dieckol on intracellular 
reactive oxygen species generation.  (b) Percentage of reactive oxygen 
species generation was detected by spectrofluorometer. The data 
represent mean  ±  standard deviation of triplicate, *P < 0.05 and 
#P < 0.01  as compared with the control group

Figure  3: Dieckol on apoptotic morphological changes was analyzed by 
dual staining  (acridine orange/ethidium bromide).  (a) Microscopy images 
of control cells were showed green fluorescence, whereas dieckol‑  and 
doxorubicin‑treated cells showed red/yellow fluorescence. (b) Bar diagram 
showed that the percentage of apoptotic cells was calculated. The data 
represent mean ± standard deviation of triplicate, *P < 0.05 and #P < 0. 01 as 
compared with the control group
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decreased MMP, reduced antioxidants  (GSH, CAT, and SOD), and 
augmented TBARS in Molt‑4 cell lines. Furthermore, DEK treatment 
inhibited STAT3 translocation, thereby suppressing the overexpression 
of cyclins D1 and E1, PCNA, and JAK1 in Molt‑4 cells. This result shows 
that DEK suppresses leukemia cell proliferation via suppression of JAK/
STAT3 signaling pathway in Molt‑4 cells.
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