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ABSTRACT
Context: Brosimum alicastrum, Cnidoscolus chayamansa, 
Tradescantia spathacea, Turnera diffusa, Manilkara zapota, and 
Jatropha gaumeri are medicinal plants recognized in Mexican Mayan 
Culture. Aim: Methanol leaves extracts of these plants were use as raw 
material to develop a phytochemical, spectroscopy, and pharmacological 
analysis. Subjects and Methods: Methanol maceration was carried 
out and were compared in terms of yield extraction, chlorophyll, simple 
phenolic and flavonoids content, antioxidant activity (DPPH and β‑Carotene 
bleaching models), as well as isolated aorta rings (E+), precontracted with 
noradrenaline. Results: Best content of simple phenolic and flavonoids 
compounds was recorder in B. alicastrum, J. gaumeri and T. diffusa. J. 
gaumeri extract exert an antioxidant (β‑carotene bleaching: EC50: 0.8 ± 0.1 
µg/mL, Emax: 85.7% ± 0.4%; DPPH: EC50: 60.3 ± 1.8 µg/mL, Emax: 60.4% 
± 1.8%; P  <  0.05) and vasorelaxant  (EC50: 161.61  ±  7.45 µg/mL; Emax: 
79.71% ± 3.88%; P < 0.05) activity in a concentration dependent‑manner. 
Fourier transform infrared spectroscopy analysis allowed estimating a 
1.26 and 2.28% of quercetin  (Q) and gallic acid  (GA) in J. gaumeri. GA 
exerts antioxidant activity in DPPH model  (EC50: 1.6  ±  0.2 µg/mL; Emax: 
92.9% ± 3.3%) and Q/GA (1:2) mixture improves inhibition of β‑carotene 
bleaching  (EC50: 0.005  ±  0.005 µg/mL; Emax: 69.2% ± 0.7%; P  <  0.05). 
Conclusion: J. gaumeri is a medicinal plant employed in Mayan traditional 
medicine and GA and Q could be related to traditional uses, as well as 
responsible for the pharmacological effects. GA and Q interactions improve 
inhibition β‑Carotene bleaching activity, which suggests greater solubility in 
lipophilic systems and potential interactions at the plasma membrane level.
Key words: Antioxidant, gallic acid, Jatropha gaumeri, quercetin, 
vasorelaxant

SUMMARY
•  Methanol extracts of Brosimum alicastrum, Cnidoscolus chayamansa, 

Tradescantia spathacea, Turnera diffusa, Manilkara zapota and 
Jatropha gaumeri exerts vasorelaxant and antioxidant activity in a 
Concentration‑Dependent Manner. Fourier transform infrared spectroscopy 
analysis allows the identification of Q and GA in J. gaumeri extract. Q/GA (1:2) 
mix enhances the antioxidant activity in lipophilic environment.

Abbreviations used: DPPH: 1,1diphenyl2picrylhydrazyl; E+: Aorta with 
endothelium; EC50: Half‑maximal effective concentration; Emax: Maximum 
response achievable; FTIR: Fourier transform infrared spectroscopy; Q: 
Quercetin; GA: Gallic acid; NA: Noradrenaline; DMSO: Dimethylsulfoxide; 
BHT: Dibutylhydroxytoluene; FC: Folin‑ciocalteu reagent; ChlTOT: Total 
chlorophyll content; βE: β‑Carotene emulsion; PLS: Partial least‑square; CRC: 
Concentration‑response curve; ANOVA: Analysis of variance; AUC: Area 
under curve; ROS: Reactive oxygen species; RNS: Reactive nitrogen species.

Correspondence:

Dr. Francisco Javier Aguirre Crespo,
Av. Agustín Melgar S/N entre Calle 20 y Juan de la 
Barrera, Col. Buenavista, CP 24039, San Francisco 
de Campeche, Campeche, México.  
E‑mail: fjaguirr@uacam.mx
DOI: 10.4103/pm.pm_291_20

ORIGINAL ARTICLE

INTRODUCTION
Mexican healthcare agency reports that one‑third of deaths correspond 
to diabetes mellitus, ischemic heart disease, and cerebrovascular 
diseases.[1] The Mexican National Health Survey 2016 reports a 
prevalence of hypertension of 25.5%, of these, 40% were unaware of 
having hypertension. On the other hand, 79.3% of hypertensive adults 
diagnosed are under pharmacological treatment but only 45.6% are 
under control.[2]

Hypertension depends of volume ejected by the heart into the arteries, 
the elastance of arteries and the rate of blood flow.[3] In hypertension, 
endothelium relaxant or contraction soluble factors regulate vascular 

tone and alterations are associated with morphological and functional 
alterations of the endothelium.[4]
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In addition, oxidative stress increases arterial stiffness and it is associated 
with arterial remodeling.[5] It should be noted that lipid peroxidation is 
enhanced in hypertensive patients.[6]

Physiological stress are involved in the generation of oxidative lesions, 
metabolic disorders, and the development of chronic degenerative 
diseases.[7] In the vascular system, superoxide anion (O2

−) determines the 
biosynthesis and bioavailability of nitric oxide (NO) and together with 
hydrogen peroxide  (H2O2) regulates the functionality of the vascular 
system. Reactive species play an important role in the pathophysiology 
of arterial hypertension.[8]

One of the worldwide research lines is focusing on the research and 
development of synthetic and/or natural antioxidant agents,[9] which 
allows the generation of prophylactic and/or therapeutic options to 
physiological stress associated with free radicals, among other conditions. 
In this sense, chemical entities present in medicinal plants could have 
beneficial effects by reducing oxidative stress and simultaneously favoring 
physiological functions such as relaxation of vascular smooth muscle. In 
Mexico, herbal medicine is recognized as part of Traditional Medicine 
and is used in the maintenance and reestablishment of health as well as in 
the improvement of quality of life;[10] however, few documents support the 
safety and efficacy of traditional use. In this context, the current research 
was carried out to screen the antioxidant and vasorelaxant properties 
of Brosimum alicastrum Sw.  (Moraceae), Cnidoscolus chayamansa 
McVaugh (Euphorbiaceae), Tradescantia spathacea Sw. (Commelinaceae), 
Turnera diffusa Willd ex Schult  (Turneraceae), Manilkara zapota  (L.) 
P. Royen  (Sapotaceae) and Jatropha gaumeri Greenm  (Euphorbiaceae) 
to establish bases for the systematic search of chemical entities with 
potential applications to physiological stress and hypertensive diseases.

SUBJECTS AND METHODS
Chemical and drugs
Noradrenaline  (NA), papaverine, dimethylsulfoxide  (DMSO), 
2,2‑diphenyl‑1‑picrylhydrazyl  (DPPH), gallic acid, quercetin, 
dibutylhydroxytoluene (BHT), β‑carotene, linoleic acid, Tween 40, and 
Folin Ciocalteu reagent (FC) were purchased from Sigma‑Aldrich Co (St. 
Louis, MO, USA). All other reagents were analytical grade from local 
sources. Every day, extract solutions were made using distilled water.

Plant material
Plant species were select using an ethnomedical criterion. Leaves of B. 
alicastrum, C. chayamansa, T. spathacea, T. diffusa, M. zapota, and J. 
gaumeri were employed. Table 1 lists voucher numbers, ethnomedical, 
phytochemical and pharmacological aspects of each species. All species 
were collected in June‑2017 in San Francisco de Campeche, Campeche, 
México and voucher specimen were deposit in University Herbarium. 
Plant material dry at room temperature under shade; later it was ground 
and stored in hermetic plastic bags (Ziploc®).

Extraction
Crude extracts were prepared by maceration and were carried out 
with a constant mass/volume ratio  (2:28), time  (72 h periods), and 
temperature  (T: 25°C). Methanol extracts were recovered, filter, 
concentrated under reduce pressure (Buchi® Rotaevaporator) and store 
in the refrigerator for further analysis. Three independent experiments 
were performed with three replicates each (n = 9).

Determination of chlorophyll content
Chlorophyll estimation was calculated by recording the absorbance at 
λ = 645 and 663 nm as well as the use of the formula ChlTOT (μg/mL): 
20.2 (A645) +8.02 (A663), previously described.[47] Each evaluated sample 

was subjected to three‑independent experiments with three replicates 
each.

Determination of simple phenolic content
From GA (1.04–8.2 µg/mL) or stock extract solution (10 µg/mL) 0.4 
mL were transferred 0.4 mL of FC reagent in 1 mL of distilled and 
incubated for 20  min in darkness. The reaction was stopped with 
Na2CO3 10% (1.6 mL) and the absorbance was recorded at 765 nm. The 
simple phenolic content was expressed as equivalents  (mg/g) of GA 
present in the plant material.[48]

Determination of the flavonoid content
From a Q (1–10 µg/mL) or extract stock solution (10 mg/mL), 0.3 mL 
were add to 0.9 mL of MeOH, 0.15 mL AlCl310%, 0.15 mL of CH3CO2 
K 1M and 1.8 mL of distilled water. Mixtures were incubated for 30 min 
at room temperature and in dark conditions and absorbance was read at 
415 nm. The content of flavonoids in the aqueous extracts is expressed 
as equivalents  (mg/g) of quercetin present in leaves of each medicinal 
plant.[48]

Antioxidant activity (1,1‑diphenyl‑2‑picrylhydrazyl)
From extract stock solution  (1 mg/mL), serial dilutions were made 
until reaching final concentrations (1 → 100 µg/mL). For this, 200 μL 
of each concentration was added to 1.8 mL of DPPH  0.1M in MeOH; 
they were mixed and incubated for 30  min in the dark and then, the 
absorbance (λ = 517 nm) was recorded. Methanol solutions of C. sinensis 
(1–50 µg/mL; positive control), GA, Q and Q/GA (0.03–32 µg/mL) were 
used. The percentage of remaining of DPPH was calculated using the 
formula:

%DPPH = 1‑
A

A
*100sample t=30

DPPH 0.1M t=0

× .[49] Finally, the use of a non‑linear 

model was employed to determine the potency  (EC50,  [µg/mL]) and 
efficacy  (Emax,  [%]) of the antioxidant activity exerted by the extracts. 
Each evaluated sample was subject to three independent experiments 
with three replicates each.

β‑Carotene bleaching test
To obtain β‑Carotene emulsion (βE), 1 mg of β‑Carotene were dissolved 
in 5 mL of chloroform and 1 mL was added to 25 µL of linoleic acid with 
20 µL of Tween 40; chloroform was evaporated at 40°C, 50 mL of pure 
water was added and shake (βE).[50] 0.3 mL of methanolic samples were 
added to 2.5 mL of βE to reach 0.05 → 1.5 µg/mL for BHT, 0.05 → 280 
µg/mL for extracts and 0.0005 → 5.0 µg/mL for GA, Q and (Q/GA; 1:2); 
methanol was use as a blank sample. Absorbencies were measure at 
492 nm each 15 min during 2 h. Antioxidant activity was given by the 
equation ([AA − AB]/[AB0 − AB120]) × 100. AA and AB are the absorbencies 
of the test samples at each time and blank sample at 120 min, respectively, 
and AB,0 and AB,120 is the absorbance of the blank sample at t = 0 and 
t = 120 min, respectively. For each concentration, degradation rate was 
recorded and then potency and efficacy of inhibition of β‑Carotene 
bleaching was calculated using a non‑linear model. Six independent 
experiments were carried out on each sample evaluated.

Vasorelaxant activity
The experimental procedures were developed in concordance with 
recommendations of NOM‑062‑ZOO‑1999.[51] For this, rats  (Rattus 
norvergicus; male, Wistar, 275 ± 25 g) were maintained in a cycle of 12 
h light/dark at 25°C; food and water consumption were ad libitum. The 
abdominal dissection allowed obtain in the thoracic aorta, it was clean 
of the adjacent tissue and kept in the Ringer‑Krebs‑Henselit solution. 
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For evaluation, 0.3 mm segments were stabilized  (3 g; 30  min). The 
vasorelaxant activity induced by the extracts (0.03 → 560 μg/mL) was 
developed according to the methodology described.[52] Test samples 
and positive control (Papaverine: 0.1 → 3 µg/mL) were compared with 
respect to the maximum contraction induced by NA  (1  ×  10−7 M) by 
using Acqknowledge software  (BIOPAC®, CA, USA). Six independent 
experiments were carried out on each sample.

Infrared Fourier transform‑infrared spectroscopy
FTIR experiments were made from crude extracts and use the powder 
diffuse reflectance technique; the samples pellets were prepared with 
1 mg of GA or Q, 1 mg of the extract, 199 mg of KBr, and then were 
mix in an agate mortar. Subsequently, pellets were loaded in Thermo 
Nicolet Nexus 670, under the following conditions: 400–4000 cm−1 

for scan ranging and 4 cm−1 of resolution.[53] FTIR spectrum of GA, 
Q and Q/GA mixture (25/75, 50/50, and 75/25) has been employed 
for estimation of GA and Q content in the extracts derived from the 
species under study. The weighting of the area under the curve (AUC) 
at 721 y 762 cm−1 presents in the FTIR spectrum of Q, GA and 
mixtures were used to estimate Q and GA content in crude extracts 
from medicinal plants under study. For this, the partial least square 
model was used to quantify Q and GA in complex mixtures such as 
medicinal plants extracts.

Statistical analysis
The experimental results are shown as the average  ±  the standard 
error of the mean. Experimental data of concentration‑response 
curves  (CRCs) were plot and adjusted by the non‑linear employing 

Table 1: Botanical and common names of the selected plants, voucher and their ethnobotanical, phytochemical and pharmacological studies

Specie* (family) 
voucher

Commun 
and maya 
names

Parts 
employed

Traditional uses Secondary metabolites Pharmacological 
reports

Reference

Brosimum 
alicastrum Sw. 
Moraceae) 19329

Ramón, 
k’an oox, 
xichxichcuy

Seeds, 
bark, leaf

Asthma, tuberculosis, 
kidney diseases, 
hypoglicemic

Gallic acid, vanillic acid, caffeic acid, 
p‑hydroxybenzoic acid, p‑cumaric acid, 
(‑)‑epicatechin, starch

Hypoglysemic [11‑14]

Tradescantia 
spathacea Sw. 
(Commelinaceae)
19187

Maguey 
morado 
matlali, 
zopilotera

Leaf, latex Ulcers, wounds, 
cancer, dysentery, 
headache, asthma, 
cough, intestinal 
infections, 
inflammation

Kaempferol, quercetin, isoquercetin, 
luteolin 5‑glucoside, rutin, hexadecanoic 
acid, 1,12 octadecanoic acid, sitosterol, 
stigmasterol, 4‑ (2,4‑dihydroxy‑phenyl) 
‑5‑hydroxy‑5H‑furan‑2‑one), reonina

Antimutagenic, 
antiviral, 
antimicrobial

[15‑20]

Turnera diffusa 
Willd ex Schult 
(Tumeraceae) 
10532

Damiana 
ajkits, 
misibkook

Laef
Branches

Anemia, bronchitis, 
cough, diabetes, 
fever, mycosis, 
gastrointestinal, 
respiratory and skin 
diseases

Tetrafilin B, arbutin, gonzalitosin 
I, damianina, tricosan‑2‑one, 
hexacosane, a‑pinene, β‑pinene, 
p‑cymene, 1,8‑cineole, sitosterol, 
apigenin‑7‑O‑6‑paracumaroil‑glucoside

Anxiolytic, 
antibacterial, 
antidiabetic, 
antioxidant, 
antiobesity, 
antispasmodic, 
citotoxic, 
gastroprotector, 
hepatoprotector, 
enzyme inhibitor

[21,22]

Cnidoscolus 
chayamansa 
McVaugh 
(Euphorbiaceae)
10532

Chaya 
chaykol, 
xchay.

Leaf
Latex

Diuretic, 
anti‑inflammatory, 
energizing, pain, 
kidney and skin 
diseases, laxative, 
constipation, 
diarrhea, disentery, 
burns, diabetes, 
hypercholesterolemia, 
hypertension

Palmitic acid, stearic acid, oleic 
acid, myristic acid, arachidonic, 
lauric acid, 9,10, amentoflavone, 
kampferol‑3‑O‑rutinoside, naringenin, 
catechin, protocatechuic acid, 
dihydromyricetin, linamarin

Antioxidant, 
hipoglysemic, 
hypocholesterolemic, 
hypotrygliceridemic, 
antitumoral

[23‑31]

Manilkara zapota 
L. Van Royen 
(Sapotaceae) 4727

Chicozapote, 
zapote chico, 
sak‑ya, ya

Fruits, 
seeds, 
bark, leaf

Astringent, diuretic, 
lung and kidney 
diseases, pain, 
emetic, fever, 
diarrhea, disentery, 
rheumatism, 
cold, leukorrhea, 
hypertension, 
insomnia, inflamation

lupeol acetate, oleanolic acid, 
apigenin‑7‑O‑α‑L‑rhamnoside, 
myricetin‑3‑O‑α‑L‑rhamnoside, caffeic 
acid, epicatechin taraxerol methyl 
ether, spinasterol, 6‑hydroxyflavanon, 
(+)‑dihydrokaempferol, 
3,4‑dihydroxybenzoic acid, taraxerol, 
taraxerone caffeoylquinic acid and 
methyl 4‑O‑galloylchlorogenate

Antimicrobial, 
citotoxic, 
hypoglysemic, 
immunostimulator, 
antitumoral, 
anti‑diarrheal, 
anti‑secretory, 
anti‑spasmodic, 
anti‑motility, 
anti‑ulcer

[32‑39]

Jatropha 
gaumerii Greenm 
(Euphorbiaceae) 
18927

Pomolche 
chulche×, 
xpomolche×

Leaf Mauthwash, ulcers, 
skin diseases, wounds, 
hemorrhoids, herpes, 
diarrhea, disentery, 
cancer

2‑epi‑jatrogrossidione, 
15‑epi‑4E‑jatrogrossidentadione, 
b‑sitosterol, α‑amirina, β‑amirina, 
taraxasterol

Antibacterial, 
anti‑inflammtory, 
healing, antioxidant, 
citotoxic

[40‑46]

The Plant List (2013). Version 1.1. Published on the Internet; http://www.theplantlist.org/(accessed 1st January)
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curve‑fitting program MicrocalTM Origin 8.0  (Microcal Software Inc., 
USA). Significance was evaluated using an analysis of variance; values of 
P < 0.05 were considered statistically significant.

RESULTS
Effect of methanol maceration on leaves extraction
The methanol maceration procedure was suitable to obtain raw material 
from leaves of medicinal plants. The yield was significant  (P  <  0.05) 
lower in arboreal species. Methanol maceration in arboreal 

species  (B. alicastrum, M. zapota and J. gaumeri) also showed the 
significant  (P  <  0.05) reduction in chlorophyll extraction. Whereas 
the maceration with methanol ameliorates the yield and chlorophyll 
extraction in T. spathacea, C. chayamansa and T. diffusa. The chemical 
and spectroscopic analysis allows to the estimation of simple phenolic 
and flavonoid compounds content in all experimental methanolic 
extracts. Herbal species showed low content of simple phenolic and 
flavonoids compounds with respect to arboreal species as well as 
methanol extract of C. sinensis, internal control employed. In this sense, 
B. alicastrum and J. gaumeri extracts registered the best content of simple 
phenols and flavonoids compounds [Table 2].

Table 3: Antioxidant (2,2‑diphenyl‑1‑picrylhydrazyl, β‑carotene bleaching) and vasorelaxant activity induced by methanolic extracts derived of the selected 
plants

Species Antioxidant DPPH Inhibition β‑Carotene bleaching Vasorrelaxant

Potency EC50 
(µg/mL)

Efficacy 
Emax (%)

Potency EC50 
(µg/mL)

Efficacy 
Emax (%)

Potency EC50 
(µg/mL)

Efficacy 
Emax (%)

Brosimum alicastrum 22.9±2.4* 98.7±6.4 6.3±0.1 83.0±0.1 >500 21.4±1.7*
Cnidoscolus chayamansa 49.6±2.4 26.1±10.7 >500 54.0±0.1 >500 16.8±3.3*
Tradescantia spathacea 42.4±9.9 40.3±6.5 >500 34.9±0.01 >500 8.5±2.7*
Turnera diffusa 28.9±3.6 34.9±14.2 233.1±0.2 52.2±0.1 >500 31.4±2.7*
Manilkara zapota 30.6±0.9* 85.8±1.7 55.6±1.6 85.4±0.1 >500 47.8±3.4*
Jatropha gaumeri 60.3±1.8 60.4±1.8 0.8±0.01 85.7±0.4 161.6±7.5 79.7±3.9
Camellia sinensis 41.8±0.3 94.6±0.8 113.4±0.04 64.6±1.2 NA NA
BHT NA NA 0.36±0.01 80.6±0.2 NA NA
Papaverine NA NA NA NA 0.68±0.35 80.9±3.0

*P<0.05 versus C. sinensis. NA: No applied; BHT: Dibutylhydroxytoluene

Table 2: Quantitative analysis of methanolic extracts derived of medicinal plants from Campeche, Campeche, Mexico

Specie Yield (%) Chlorophylls (mg/mL) Simple phenols Eq. GA (µg/g) Flavonoids Eq. Quercetin (µg/g)
Brosimum alicastrum 24.41±0.01 8.20±1.76 1.71±0.02 10.77±0.17
Tradescantia spathacea 37.39±0.07 28.94±3.31 0.47±0.14 3.52±0.04
Turnera diffusa 30.35±0.01 28.76±3.04 0.39±0.01 6.43±0.19
Cnidoscolus chayamansa 35.16±0.04 13.74±1.37 0.42±0.01 4.45±0.04
Manilkara zapota 15.39±3.39 3.56±0.63 0.59±0.01 3.3±0.03
Jatropha gaumeri 6.66±0.31 9.14±3.45 0.79±0.002 4.67±0.07
Camellia sinensis 38.57±4.09 NA 3.30±0.005 11.18±0.01

*P<0.05 versus C. sinensis. NA: No applied

Graph  2: β‑Carotene bleaching activity induced by crude extracts 
derived from aerial parts of medicinal plants  (0.05  →  280 µg/mL). 
Results are expressed as the mean  ±  standard error of the mean of six 
experiments (P < 0.05 vs. dibutylhydroxytoluene)

Graph  1: Antioxidant activity induced by crude extracts derived from 
aerial parts of medicinal plants (1 → 100 μg/mL) in DPPH model test. 
Results are expressed as the mean  ±  standard error of the mean of six 
experiments (P < 0.05 vs. C. sinensis)
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In vitro and ex vivo pharmacological evaluations
B. alicastrum, J. gaumeri and M. zapota methanolic extracts exert 
an antioxidant activity in a concentration‑dependent manner on 
the DPPH antioxidant model  [Graph 1 and Table 3]. CRC analysis 
revealed that methanolic extract of B. alicastrum and M. zapota exerts 
a significant antioxidant activity with better potency and efficacy 
than C. sinensis  (EC50: 22.9 ± 2.4 µg/mL; Emax: 98.7% ± 6.4%; EC50: 
30.6 ± 0.9 µg/mL; Emax: 85.8% ± 1.7% vs. EC50: 41.8 ± 0.3 µg/mL; Emax: 
94.6 ± 0.8; P < 0.05%) extract. On the other hand, among herbaceous 
species only T. diffusa extract exerts a great potency (EC50: 28.9 ± 3.6 
µg/mL) of antioxidant activity but with low efficacy (Emax: 34.9% ± 
14.2%) as free radical scavenger.
Extracts derived from arboreal species showed a significant (P < 0.05) 
inhibition of β‑carotene bleaching activity. J. gaumeri  (EC50: 
0.8 ± 0.01 µg/mL; Emax: 85.7 ± 0.4%), B. alicastrum (EC50: 6.3 ± 0.1 µg/
mL; Emax: 83.0  ±  0.1%) and M. zapota  (EC50: 55.6  ±  1.6 µg/mL; Emax: 
85.4 ± 0.1%) extracts exhibited an inhibition of β‑Carotene bleaching 
activity in a concentration‑dependent manner with better potency and 
efficacy than C. sinensis (EC50: 113.4 ± 0.04 µg/mL; Emax: 64.6 ± 1.2%) 
extract. Finally, methanol extracts of C. chaymansa, T. spathacea and 
T. diffusa do not exert a significant bleaching activity  [Graph  2 and 
Table 3].
Evaluation in aortic rings (E+) pre‑contracted with noradrenaline (1 µM) 
allows to identify that the extracts of B. alicastrum, C. chayamansa, T. 
spathacea, M. zapota and T. diffusa do not exert a significant vasorelaxant 
activity. However, CRC analysis revealed that J. gaumeri extract exerts 
a similar smooth muscle relaxant effect than papaverine but less 
potency [Graph 3 and Table 3].

Fourier transform‑infrared spectroscopy analysis 
and estimation of gallic acid and quercetin content
Bands observed between 3600 and 3300 cm−1 correspond to stretching 
vibrations of OH groups typical of water, alcohols, phenols, flavonoids as 
well as amides [Graph 4]. Peaks at 2900–2800 cm−1 are associated with 
narrowing and deformation vibrations specific to ‑CH3 and ‑CH2 from 
lipids, methoxy derivatives, aldehydes, and cis double bonds. 1750–1600 
cm−1 complex area corresponds to bending vibration of N‑H  (amino 
acids), C = O stretching (ketones, aldehydes, esters), free fatty acids (1710 
cm−1), and glycerides (1740 cm−1). A 1600–1500 cm−1 area corresponds to 
aromatic domains and N‑H bending vibrations. 1450–1300 corresponds 
to stretching vibrations C‑O and C‑C present in amides and phenyl 
groups, respectively. Stretching vibrations of carbonyl C‑O or O‑H 
bending were observed at 1300–1100 cm−1 area. Signals at 1030, 1050, 
1105, and 1130 cm−1 were associated with stretching vibrations C‑O of 
mono‑, oligo‑ and carbohydrates. Finally, <1000 cm−1 area was observed 
C‑H bending vibrations that could correspond to isoprenoids.[54‑57]

Quantitative determination of the inorganic and organic matter,[58] 
as well as natural products[59,60] are demonstrated by KBr‑FTIR in the 
transmission mode. In this sense, the presence of GA and Q in methanol 
extracts was carried out by analysis of peaks into a fingerprint‑FTIR 
region. The FTIR spectra of Q, GA and Q/GA mixtures (25/75, 50/50, 
and 75/25) are presented in Graph  5. In 1100–600 cm−1 region, Q 
and GA showed 10 and 13 bands, respectively. AUC at  (725–717 
cm−1) and  (756.5–767.8 cm−1) were employed to estimates Q and GA, 
respectively. AUC of Q, GA and mixtures (25/75, 50/50, and 75/25) of 
FTIR spectrum allow us identified a high linear correlation (r2 = 0.87) 
and  (r2 = 0.93), respectively. This allows estimating 1.26 and 2.28% of 
Q and GA in J. gaumeri methanol extract. These metabolites are not 
identified in T. spathacea, T. diffusa, M. zapota, B. alicastrum and C. 
chayamansa, however, their presence is not ruled out.

Graph 3: The vasorelaxant effect induced by crude extracts derived from 
aerial parts of medicinal plants (0.03 → 560 μg/mL) in aortic rings isolated 
from rats. Results are expressed as the mean ± standard error of the mean 
of six experiments (P < 0.05 vs. Papaverine)

Graph  4: Fourier transform infrared spectroscopy spectra of pure 
methanolic extracts of the aerial parts of the medicinal plant species 
under study (dried solid mass, KBr)

Graph  5: Fourier transform infrared spectroscopy spectra of pure 
quercetin, gallic acid, and mixtures (25/75, 50/50 and 75/25) (Dried solid 
mass, KBr)
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In vitro evaluations of Q, GA and Q/GA (1:2) mixture
Finally, the antioxidant activity of GA, Q, and Q/GA  (1:2) mix was 
evaluated by using the DPPH and bleaching of β‑carotene models. GA, 
Q, and Q/GA exerts antioxidant activities in both DPPH and β‑carotene 
bleaching models in a concentration‑dependent manner [Graphs 6, 7 
and Table 4]. The CRC analysis allows identified that Q/GA (1:2) mixture 
was markedly shifting to the right and reduce the radical scavenging 
activity in the DPPH model, with respect to GA. On the other hand, the 
CRC of inhibition β‑carotene bleaching activity exerted for Q/GA mix 
was significant (P < 0.05) shift to the left with respect to GA and Q as well 
as BHT (positive control).

DISCUSSION
Plantae kingdom registers a huge diversity of chemical structures, which 
represent an important source of new drugs. For the present work, B. 
alicastrum, C. chayamansa, T. spathacea, T. diffusa, M. zapota and J. 
gaumeri were select for their ethnomedical and pharmacological reports 
as well as the presence of secondary metabolites with pharmacological 
reports  [Table  1]. Maceration is a method included in the Mexican 
Pharmacopoeia[61] and it is relatively advantageous to obtain the raw 
material from tissues derived of medicinal plants because solvents 
dissolve secondary metabolites in function to the polarity, temperature, 
and time. The assay can be employed with other polar or nonpolar solvents 
to obtain both lipophilic and hydrophilic chemical entities. As can be 
seen in Table 2, variations in the yield as well as in the estimation of the 
content of chlorophyll, simple phenolic compounds, and flavonoids were 
registered. These results allow demonstrating the interspecies biological 
variability and need to use specific standard conditions for harvest and 

extraction of the raw material. In the study of natural products, seasonal 
variations, drying, and storage influence in the production of high‑quality 
herbal products.[62] In the same way, different extraction methods are 
distinguished and each one presents advantages and disadvantages.[63] 
This context reflects the need for the employment of diverse strategies 
and technologies for the characterization, identification, and production 
of natural products.[64]

The potential emergent area is the natural antioxidants agents for their 
actions on ROS and RNS species generated in endothelial and smooth 
muscle cells from the vascular system.[65] In this sense, to explore the 
antioxidant and vasorelaxant effects of methanolic extracts from 
medicinal plants were employed DPPH and β‑Carotene in vitro tests and 
noradrenaline‑precontracted aorta rings as an ex vivo model. Methanol 
extracts exert antioxidant activity and the best potency and efficacy were 
observed in extracts derived from arboreal species  (B. alicastrum, M. 
zapota and J. gaumeri), and no polar metabolites and polar compounds 
could be related with high radical scavenging activity [Graphs 1, 2 and 
Table 3]. The increased potency in the inhibition β-carotene bleaching test 
with respect to DPPH model [Table 3] suggests that J. gaumeri methanol 
extract could have nonpolar antioxidant metabolites. In fact, metabolites 
such as as α/β‑amyrin,[66] sterols,[67] gallic acid,[68] and quercetin[69] act as 
lipid peroxidation inhibitors, however, previous studies suggest that the 
DPPH method is independent of the substrate polarity,[50] in this sense, 
metabolites as β‑amyrin,[70] taraxerol,[34] β‑sitosterol,[71] gallic acid[35] and 
quercetin[72] exert DPPH free radical scavenging activity. Quantification 
of natural products using FTIR has been previously reported.[73,74] 
Analysis of the FTIR spectrum of Q and GA allow the estimation of 
these metabolites in a 1:2 ratio [Graphs 4 and 5]. The mix of Q/GA exert 
the best parameter of potency and efficacy in the inhibition β-carotene 

Graph  6: Antioxidant  (1,1diphenyl2picrylhydrazyl) activity induced 
by GA, Q, and mix Q/GA  (1:2) identified in leaves of Jatropha gaumeri. 
Results are expressed as the mean  ±  standard error of the mean of six 
experiments (P < 0.05)

Graph 7: Antioxidant (β carotene) activity induced by GA, Q, and mix Q/
GA (1:2) identified in leaves of Jatropha gaumeri. Results are expressed as 
the mean ± standard error of the mean of six experiments (P < 0.05)

Table 4: Antioxidant activity induced by Quercetin, Gallic Acid and mix (1:2)

Compound Antioxidant DPPH Inhibition β‑Carotene bleaching

Potency CE50 (µg/mL) Efficacy Emax (%) Potency CE50 (µg/mL) Efficacy Emax (%)
Q 4.08±0.63 99.9±3.8 0.036±0.0001 69.6±0.06
GA 1.64±0.2 92.9±3.3 0.037±0.001 66.2±0.1
Q: GA (1:2) 4.89±0.2 91.8±0.7 0.017±0.0006 72.2±0.6
BHT NA NA 0.36±0.01 80.6±0.2

*P<0.05 versus BHT. NA: No applied; BHT: Dibutylhydroxytoluene; DPPH: 2,2‑diphenyl‑1‑picrylhydrazyl; Q: Quercetin; GA: Gallic acid
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bleaching test  [Graph  7 and Table  4] these results suggesting that 
lipophilic environment favor the interaction between them, reduction 
of ionized species, increase of non‑ionized species and better interaction 
with lipophilic molecules.
Simple phenolic compounds, flavonoids,[75] and triterpenes[76] have been 
reported to exert vasorelaxant effects on rat aortic rings. α/β‑amyrin 
open K+ channel.[77] β‑sitosterol does not affect acetylcholine‑induced 
relaxation.[78] GA modulate hemodynamic parameters[79] and quercetin, 
induce relaxation in a concentration‑dependent manner.[80] Partial 
vasorelaxant effects induced by J. gaumeri [Graph 3 and Table 3] methanol 
extract suggest a great diversity of chemical entities and a low abundance 
of those with vasorelaxant activity. In this context, metabolites such as 
taraxerol, β‑sitosterol, α/β‑amyrin as well as gallic acid and quercetin 
identified in leaves methanolic extracts of J. gaumeri work together in a 
lipophilic environment and could be participating in the antioxidant and 
vasorelaxant effects.

CONCLUSION
J. gaumeri is a medicinal plant employed in Mayan traditional medicine 
and GA and Q could be related to traditional uses, as well as responsible 
for the pharmacological effects. GA and Q interactions improve 
inhibition β Carotene bleaching activity, which suggests greater solubility 
in lipophilic systems and potential interactions at the plasma membrane 
level.
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