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ABSTRACT
Aim: This study was intended to identify potentially target genes and 
underlying biological pathway of sanguinarine in ovarian cancer. Methods: 
We obtained the expression changes of downstream target genes and 
underlying biological pathways regulated by control and sanguinarine 
groups via Affymetrix gene expression profile chip in ovarian cancer cells. 
An Affymetrix Genechip Agilent mRNA Array was used to recognize 
differentially expressed genes (DEGs). Afterward, gene ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes  (KEGG) pathway analyses 
were performed for the DEGs using the DAVID database. Results: A total 
of 1185 DEGs between sanguinarine and control groups were identified, 
including 835 upregulated and 350 downregulated DEGs. The result of GO 
analysis recommended that the DEGs were mostly enriched in biological 
processes, including negative regulation of gene expression, nitrogen 
compound metabolic process, and transcription from RNA polymerase 
II promoter. Alterations in cellular components  (CC)   were suggestively 
enriched in the cytoskeleton and endoplasmic reticulum. The changes 
in molecular function were suggestively enriched in nucleic acid‑binding 
transcription factor activity, protein dimerization activity, and enzyme 
binding. The results of the KEGG pathway analysis indicated that the DEGs 
were mostly concentrated in “Systemic lupus erythematosus,” “MAPK 
signalling pathway,” “Pathways in cancer,” and “Metabolic pathways.” 
Conclusion: The present study provided insights into the mechanism 
underlying sanguinarine target genes in ovarian cancer cells, which might 
be used as effective targets for OC diagnosis and treatment.
Key words: Bioinformatics analysis, differentially expressed genes, 
enrichment analysis, ovarian cancer, sanguinarine

SUMMARY
•  In this study, we reported the following achievements:
•  A total of 1185 differentially expressed genes (DEGs) between sanguinarine 

and control groups were identified, including 835 upregulated and 350 
downregulated DEGs

•  The result of gene ontology analysis recommended that the DEGs were 
mostly enriched in biological processes

•  The results of the Kyoto Encyclopedia of Genes and Genomes pathway 
analysis indicated that the DEGs were mostly concentrated in “Systemic 

lupus erythematosus,” “MAPK signalling pathway,” “Pathways in cancer,” and 
“Metabolic pathways”

•  Sanguinarine may serve as a potential therapeutic reagent for epithelial 
ovarian cancer.

Abbreviations used: OC: Ovarian cancer; DEGs: Differentially expressed 
genes; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and 
Genomes; DAVID database: Database for Annotation, Visualization, and 
Integrated Discovery; BP: Biological processes; CC: Cell component; 
MF: Molecular function; ROS: Reactive oxygen species; ER: Endoplasmic 
reticulum; MAPK: Mitogen‑activated protein kinase; JNK: C‑Jun N‑terminal 
kinase; STRAP: Serine‑threonine kinase receptor‑associated protein; MELK; 
maternal embryonic leucine zipper kinase; FDR: False discovery rate; PCA: 
Principal component analysis; ERK: Extracellular signal‑regulated kinase; 
p38MAPK: P38 mitogen‑activated protein kinase.
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INTRODUCTION
Ovarian cancer is the second common gynecological malignancy but 
the leading cause of death for all gynecological cancer. Globally, there 
are approximately 240,000 women diagnosed with ovarian cancer each 
year, with a 5‑year survival rate below 45% and a 15,000  yearly death 
toll, making it the 8th cause of cancer‑associated death in women.[1] 
However, the cause and underlying molecular events of ovarian cancer 
are not clear. The high mortality rate of ovarian carcinoma is due to 
diagnosis at an advanced stage, recurrence, and metastasis, with 5‑year 
rate below 43%.[2‑5] Although cytoreductive surgery and platinum‑ and 
taxane‑based chemotherapies remain the standards of treatment for 
patients with ovarian cancer, the effectiveness of the aforementioned 

chemotherapeutic agents is limited by drug resistance.[6] Therefore, 
developing more effective chemotherapeutic agents for ovarian cancer 
is instantly desirable.
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Sanguinarine, a member of quaternary benzophenanthridine alkaloid, 
exhibits anticancer potential through its ability of inducing tumor 
cells apoptosis, antiproliferative, antiangiogenic, and anti‑invasive 
properties.[7] In lung cancer, sanguinarine is found to play antitumor 
via inducing the generation of reactive oxygen species  (ROS) and the 
stress of endoplasmic reticulum (ER).[8] It is also stated that sanguinarine 
can conquer the expression of miR‑96‑5p and miR‑29c‑3p and activate 
the MAPK/JNK signaling pathway to inhibit the proliferation of gastric 
cancer cells;[9] it also conveyed that sanguinarine can suppress the 
growth of colorectal cancer cells through disassociation between STRAP 
and MELK,[10] and sanguinarine also plays the same inhibit effect on 
the breast cancer via inducing HO‑1 expression.[11] In addition, it was 
found that sanguinarine may inhibit ovarian cancer growth,[12] but the 
underlying mechanisms are not completely clear.
In recent years, gene chip, a high‑throughput, ultramicro technology, 
has been used to study the molecular mechanisms of drugs by detecting 
gene regulation and expression networks at the organism level.[13] 
Bioinformatics tools can be used to link genetic and genomic data for 
a better understanding of evolutionary facets of molecular and cancer 
biology. For example, image and signal processing bioinformatics 
techniques make it possible to extract useful information from massive 
raw data collection. This tool can also establish and query biological data 
from the text mining of literature and expression databases to denote gene 
ontologies. These discoveries have shown great significance in revealing 
the molecular mechanisms and the effects of drugs on different biological 
pathways.
To discover the molecular mechanism of sanguinarine‑treated ovarian 
cancer by identifying potentially target genes and underlying biological 
pathway, we analyzed Affymetrix gene expression profile chip data to get 
differentially expressed genes (DEGs) between control and sanguinarine 
groups in ovarian cancer cells. Then, gene ontology  (GO) enrichment 
analysis and Kyoto Encyclopedia of Genes and Genomes  (KEGG) 
pathway analysis were performed to describe the molecular mechanisms 
of sanguinarine‑treated ovarian cancer. A  total of 1185 DEGs were 
identified, which may be effective targets for clinical diagnosis and 
therapy of ovarian cancer.

METHODS
Reagents
Ovarian cancer cell line SKOV3 was purchased from Kunming Institute 
of Zoology, Chinese Academy of Sciences (Kunming, China). The cells 

were cultured in Dulbecco’s Modified Eagle’s Medium  (Gibco, Grand 
Island, NY, USA) supplemented with 10% fetal bovine serum  (Gibco, 
Grand Island, NY, USA) and penicillin–streptomycin  (Sigma‑Aldrich; 
Merck KGaA, Darmstadt, Germany) in an incubator with 5% CO2 at 
37°C. Sanguinarine  (Lot number: 20150607, purity  >98%，molecular 
formula: C20H14NO4) was purchased from RongHe Pharmaceutical 
Technology (Shanghai, China).

Cell proliferation assays
The cells were divided into two groups: control and sanguinarine groups. 
Four hours after seeding, the cell groups were treated with phosphate 
buffer saline or sanguinarine  (2.0 μmol/L), respectively. Proliferation 
of ovarian cancer cells was determined by measuring the absorbance 
of CCK‑8 according to the manufacturer’s instructions (Thermo, USA) 
at 24, 48, 72, 96, and 120 h. A microplate spectrophotometer (BioTek, 
Winooski, VT, USA) was used to measure the absorbance of each 
sample at 450 nm, then calculated for survival curves. The experiment 
was performed in triplicate. Doses of sanguinarine were chosen 
based on pilot experiments as follows. SKOV3 cells were treated 
with sanguinarine at doses of 0, 1, 2, 4, 8, 16, 32, and 64 μmol/L. The 
2‑(2‑methoxy‑4‑nitrophenyl)‑3‑(4‑nitrophenyl)‑5‑(2, 4‑disulfonic 
benzene)‑2 h‑tetrazolium monosodium salt)  (CCK‑8) assays were 
performed to determine cellular proliferation. Pilot experiments showed 
that the IC50 value of sanguinarine was 2 μmol/L. Therefore, this value 
was chosen for further determination [Figure 1a].

Microarray analysis
Total RNA from the control and sanguinarine group was isolated using 
TRIzol reagent (Invitrogen, CA, USA) according to the manufacturer’s 
instructions. RNA purity was examined using an Agilent Bioanalyzer 
2100 (Agilent Technologies, Inc., Santa Clara, CA, USA). These samples 
were amplified, labeled, and purified to get biotin labeled amplified 
RNA using a GeneChip 3’IVT Express Kit (Affymetrix; Thermo Fisher 
Scientific Inc.). Array hybridization and washes were performed using 
GeneChip hybridization, wash, and stain kit  (Affymetrix; Thermo 
Fisher Scientific Inc.). Then, the gene chips were scanned with 
GeneChip Scanner 3000  (Affymetrix; Thermo Fisher Scientific Inc.). 
The Affymetrix Genechip Agilent mRNA Array was acquired from 
GeneChem (Shanghai, China). Normalization, background correction, 
and data cleaning were used to adjust sample signals and guarantee 
integrity. Furthermore, the gene expression profile is processed by 
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Figure 1: (a) Effect of the drug concentration on the SKOV3 inhibitive rate. The SKOV3 cell line was incubated with different concentrations of the drugs and 
the inhibitive rate of cell line was tested with the CCK8 assay. (b) Effects of sanguinarine on SKOV3 proliferation. CCK8 assays were performed to determine 
the cell proliferation abilities in control groups (NC) and sanguinarine groups (DRUG). OD: Optical density
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volcano plot, principal component analysis (PCA), and cluster analysis 
to improve the consistency and accuracy of the studies. Benjamini and 
Hochberg’s false discovery rate (FDR) and fold change were used to filter 
DEGs. The absolute value of FC (fold change) >3.00 and FDR <0.05 was 
measured statistically significant.

Gene ontology and Kyoto Encyclopedia of Genes 
and Genomes pathway analysis
GO categories include three domains: biological processes  (BP), 
cellular components  (CC), and molecular functions  (MF). Such 
analyses help us to link and classify DEGs to better understand 
their biological functions.[14] The Kyoto KEGG pathway analysis is a 
knowledge base, which is used to study the functional interpretation 
of genes and genomes as a whole network.[15] Database for Annotation, 
Visualization, and Integrated Discovery (DAVID; https://david.ncifcrf.
gov/), online database, was used to explore the role of sanguinarine‐
related signaling pathways in OC treatment, with P < 0.05 cutoff for 
significance.

Statistical analysis
All statistical analyses were performed using SPSS  (version 18.0; SPSS 
Inc., Chicago, USA).  The significance of the differences was determined 
using Student’s t‑test  (two‑sided). GO analysis and KEGG enrichment 

analysis were analyzed using Fisher’s exact test. Data are accessible as 
means  ±  standard errors of the meaning. P  < 0.05 was considered 
statistically significant.

RESULTS
Sanguinarine suppressed the proliferation of SKOV3 
ovarian cancer cells
To confirm that sanguinarine in vitro effects on the growth of ovarian 
cancer cells, we performed CCK8 assays. The assays showed that 
sanguinarine suggestively suppressed the proliferation of SKOV3 cells in 
comparison with the control cells [P < 0.05, Figure 1b].

Identification of differentially expressed genes in 
sanguinarine‑treated ovarian cancer cells
A total of 1185 DEGs were obtained from Affymetrix GeneChip Agilent 
mRNA Array, including 835 upregulated and 350 downregulated 
DEGs. Top ten upregulated genes and top ten downregulated genes are 
presented in Table S1. We selected expressed gene probes satisfying the 
screening criterion of Fold Change >3.0 and FDR <0.05 for hierarchical 
clustering analysis. It was clear that the grouping was rational and data 
could be directly applied to further analysis  [Figure  2a]. The volcano 
plot displayed that the expressions of DEGs between sanguinarine and 
controls were significantly different  [Figure 2b]. PCA provided a clear 
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Figure 2: (a) Hierarchical clustering analysis of differentially expressed genes. The hierarchical cluster image shows the differential gene expression profiles 
in DRUG and NC groups. The heat maps display a color scale: red indicates upregulation, whereas green represents downregulation. The columns and rows 
in the heat maps represent samples and differentially expressed genes, respectively. Color brightness represents the degree of difference, as shown in the 
color bar. (b) Difference significance analysis of differentially expressed genes. The volcano plot shows the distribution of differentially expressed genes in 
grouping comparison and fold change on x‑axis. The P value on y‑axis represents the significance of the difference. Green lines represent the threshold value 
of P and multiple screening, respectively. Each point in the diagram is a detected gene probe. Red dots represent the difference probes above each group. 
|Fold change|>3 and false discovery rate <0.05. The significance of gene differential expression between experimental and control groups is indicated. (c) 
Principal component analysis of differentially expressed genes. The red dots represent the DRUG samples and the green dots represent the NC sample. The 
different experimental groups are separated from one another, the experimental data show good repeatability, thereby showing good specificity
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differentiation between sanguinarine and control groups and presented 
good specificity [Figure 2c].

Gene ontology functional enrichment analysis of 
differentially expressed genes
GO term analysis[16] is a generally used approach for studying large‑scale 
genomic or transcriptomic data in function that contains three terms: 
biological process, cellular component, and MF categories. In this study, 
the changes of DEGs in BP were rich in negative regulation of gene 
expression, nitrogen compound metabolic process, and transcription 
from RNA polymerase II promoter. Alterations in cell component (CC) 
were significantly augmented in the cytoskeleton and ER. The 
changes in MF were significantly enriched in nucleic acid‑binding 
transcription factor activity, protein dimerization activity, and enzyme 
binding [Tables S2‑S4 and Figure 3].

Further identification and validation of differentially 
expressed genes using the Kyoto Encyclopedia of 
Genes and Genomes approach
KEGG signal pathway analysis was performed to analyze the identified 
DEGs for involved signal pathways. As a result, in the 1185 DEGs, we 
found that these genes are involved in signal pathways including systemic 
lupus eryth, MAPK signaling pathway, pathways in cancer, pentose and 
glucuronate interconversions, cytokine–cytokine receptor interaction, 
and porphyrin and chlorophyll metabolism, etc., [Table S5 and Figure 4]. 
These results are useful for investigating specific processes, functions, 
and pathways involved in sanguinarine‑treated ovarian cancer.

DISCUSSION
Ovarian cancer is a common gynecological malignancy that threatens 
female health seriously, owing to the high recurrence and the 
poor clinical outcomes.[1‑3] It has been stated that sanguinarine has 

antioxidant, anti‑inflammatory, pro‑apoptotic, and growth inhibitory 
effects on a variety of cancer cells.[7] However, the underlying 
mechanisms of sanguinarine in ovarian cancer remain indefinable. 
In the present study, we discovered the mechanism underlying the 
antitumor activity of sanguinarine in ovarian cancer by gene microarray 
assay and integrated bioinformatics analysis. As a total, 1185 DEGs, 835 
were upregulated and 350 were downregulated. Then, we performed GO 
annotation and KEGG pathway enrichment analysis of the 1185 DEGs. 
Among GO annotation enrichment analysis of the sanguinarine target 
genes, BP term annotation is the most augmented term. In addition, 
cytoskeleton, ER, genetic material, and nuclear and extracellular 
space were suggestively identified in CC term annotation. In MF term 
annotation, the target genes were significantly attentive on the activity 
of transcriptional activators, protein dimerization/heterodimerization 
activity, as well as the binding of enzyme, DNA, ribonucleotide, identical 
protein, and regulatory region nucleic acid.
Top 10 upregulated genes, including HSPA7, HSPA6, ATF3, CRYAB, 
LAMA2, ANKRD1, HMOX1, C20orf197, GEM, and KLF4, were 
recognized based on the microarray of DEG analyses. HSPA7 and 
HSPA6 are members of the human heat shock protein gene family, 
which are significant regulators of cellular proliferation, differentiation, 
and strongly occupied in the molecular orchestration of cancer 
development and progression.[17,18] HSPA6 is one of the five major 
HSP70 members. HSP70 proteins are auspicious drug targets for 
cancer therapy and they are involved in mediating drug resistance in 
cancer therapy. The expression of HSPA6 can be induced by anticancer 
agents.[19,20] Emily et  al. stated that proteasome inhibitor MG‑132 
induces the expression of HSPA6 on the surface of human colon 
cancer cells.[21] Petric et  al. found that potential anticancer agents 
such as HSP90 inhibitors, geldanamycin, induce the expression of 
HSPA6 in breast cancer cells, signifying that HSPA6 may be a specific 
marker for HSP90 inhibition.[22] In the present study, the expression 

Figure  3: Gene annotation  (gene ontology) enrichment analysis 
of differentially expressed genes  (top 10). The bar plot shows the 
enrichment scores (−log10[false discovery rate]) of significant enrichment 
gene ontology terms. Gene ontology categories cover three domains: 
biological processes, molecular functions and cellular components (false 
discovery rate <0.05 is recommended)

Figure  4: Kyoto Encyclopedia of Genes and Genomes signal pathway 
analysis of differentially expressed genes (top 10). The bar plot shows the 
enrichment scores (−log10[false discovery rate]) of significant enrichment 
Kyoto Encyclopedia of Genes and Genomes pathway analysis  (false 
discovery rate <0.05 is recommended)
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of HSPA6 was elevated, which indicated that it may also serve as a 
specific marker of sanguinarine‑treated ovarian cancer compared with 
control groups. The relevant underlying mechanism, however, requires 
further investigation. The other genes such as DHRS3, SDPR, GNB4, 
MARCKS, and MMP7 were downregulated. DHRS3 is a member of 
the SDR family and was identified as a novel transcriptional target of 
the p53 family.[23] To the best of our knowledge, the study of DHRS3 
in cancer is inadequate. A  high expression level of DHRS3 has been 
detected in a variety of cancers, including hepatocellular carcinomas,[24] 
papillary thyroid carcinomas,[25,26] and neuroblastomas.[27] These data 
recommended that DHRS3 may serve as an oncogene to promote the 
occurrence of cancer. The second downregulated gene identified in the 
present study was SDPR, which is a member of the Cavin protein family. 
SDPR has not been reported in ovarian cancer but has been stated in 
other types of tumors. A previous study stated that SDPR functions as 
a tumor suppressor gene in breast, thyroid, liver, kidney, and prostate 
cancer.[28‑31] Moreover, Ozturk et al. described that SDPR functions as a 
metastasis suppressor in breast cancer by promoting apoptosis of breast 
cancer cells.[32] However, Tahara et  al. found that SDPR is related to 
tumor progression in endometrioid cancer.[33] Scholars speculate that 
SDPR‑mediated signal activation varies according to the type of cancer. 
Up to now, it has not been reported the relationships between SDPR and 
ovarian cancer.
In addition, the KEGG analysis results recommended that the DEGs 
were identified in “Systemic lupus erythematosus,” “MAPK signalling 
pathway,” “Pathways in cancer,” and “metabolic pathways”  [Table S5]. 
Recent studies conveyed that systemic lupus erythematosus might be 
an independent risk factor for cancer.[34] MAPK signaling pathway 
was linked with differentiation, proliferation, and apoptosis of cells 
and its family members mainly include extracellular signal‑regulated 
kinase  (ERK), stress‑activated protein kinase  (JNK), and p38 
mitogen‑activated protein kinase (p38MAPK).[35] Lee et al. reported that 
MAPK/ERK signaling pathway might play a role in the development 
and progression of ovarian cancer and might provide a novel option 
for molecular‑targeted cancer therapies.[36] Furthermore, another 
study disguised that activating “MAPK signalling pathway” served an 
important role in ovarian cancer through inducing cell apoptosis and 
protective autophagy.[37] Previous studies established that “Pathways in 
cancer” and “Metabolic pathways” were linked with tumor incidence 
and tumorigenesis.[38‑40]

CONCLUSION
The present study has identified DEG, GO annotation, and KEGG 
pathway enrichment analysis between sanguinarine and control 
groups that may help us to disclose the mechanism underlying 
sanguinarine target genes in ovarian cancer cells, evaluate the potential 
therapeutic target of OC patients, and provide more clues for ovarian 
cancer treatment. Further studies are required to clarify molecular 
pathogenesis and alteration in signaling pathways of these genes 
involved sanguinarine‑treated ovarian cancer. Sanguinarine may serve 
as an effective therapeutic reagent for epithelial ovarian cancer.
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Table S2: Gene ontology (biological process) enrichment analysis of differentially expressed genes (top 10)

Index Gene set name Genes in overlap P FDR
1 GO: Negative regulation of gene expression 167 3.63E‑65 1.69E‑61
2 GO: Negative regulation of nitrogen compound metabolic process 166 2.23E‑63 5.2E‑60
3 GO: Negative regulation of transcription from RNA polymerase IIpromoter 177 2.95E‑61 4.58E‑58
4 GO: Positive regulation of gene expression 170 4.98E‑58 5.79E‑55
5 GO: Cellular response to organic substance 175 1.49E‑57 1.39E‑54
6 GO: Tissue development 148 5.66E‑50 4.39E‑47
7 GO: Positive regulation of biosynthetic process 160 1.15E‑48 7.63E‑46
8 GO: Cellular response to stress 147 1.21E‑47 7.02E‑45
9 GO: Regulation of cell death 142 2.34E‑47 1.21E‑44
10 GO: Regulation of multicellular organismal development 151 7.5E‑47 3.49E‑44

GO: Gene ontology; FDR: False discovery rate

Table S3: Gene ontology (cellular component) enrichment analysis of differentially expressed genes (top 10)

Index Gene set name Genes in overlap P FDR
1 GO: Cytoskeleton 131 2.89E‑27 1.69E‑24
2 GO: Endoplasmic reticulum 108 2.39E‑22 6.98E‑20
3 GO: Chromosome 71 1.66E‑19 3.09E‑17
4 GO: Chromatin 49 2.11E‑19 3.09E‑17
5 GO: DNA packaging complex 26 2.85E‑19 3.33E‑17
6 GO: Nucleolus 69 3.49E‑19 3.4E‑17
7 GO: Nuclear chromosome 52 2.18E‑18 1.82E‑16
8 GO: Cytoskeletal part 91 9.68E‑18 7.06E‑16
9 GO: Nuclear outer membrane endoplasmic reticulum membrane network 73 1.62E‑17 1.05E‑15
10 GO: Extracellular space 86 1.82E‑16 1.06E‑14

GO: Gene ontology; FDR: False discovery rate

Table S1: Upregulated and downregulated genes in differential expression (top 10)

Index Entrez Gene symbol Fold change Regulation P FDR

Upregulated genes
1 3311 HSPA7 396.6446648 Up 2.394E‑10 3.968E‑07
2 3310 HSPA6 396.6446648 Up 2.394E‑10 3.968E‑07
3 467 ATF3 141.7095654 Up 1.7465E‑11 2.428E‑07
4 1410 CRYAB 115.9203463 Up 1.0681E‑10 3.383E‑07
5 3908 LAMA2 110.6523285 Up 3.8307E‑11 2.987E‑07
6 27,063 ANKRD1 104.2974446 Up 2.8037E‑11 2.733E‑07
7 3162 HMOX1 97.49389662 Up 4.9516E‑11 3.217E‑07
8 284,756 C20orf197 85.50498732 Up 4.3963E‑08 3.094E‑06
9 2669 GEM 83.31282348 Up 6.349E‑10 4.868E‑07
10 9314 KLF4 58.26307739 Up 1.089E‑10 3.383E‑07

Downregulated genes
1 9249 DHRS3 −9.41384 Down 9.9807E‑07 1.771E‑05
2 8436 SDPR −8.45886052 Down 4.9995E‑09 1.091E‑06
3 59,345 GNB4 −7.67918569 Down 2.035E‑06 2.686E‑05
4 4082 MARCKS −7.40476183 Down 4.074E‑08 2.963E‑06
5 4316 MMP7 −7.39788736 Down 4.5177E‑09 1.006E‑06
6 3852 KRT5 −7.31835804 Down 6.9333E‑09 1.209E‑06
7 51,313 FAM198B −7.10069382 Down 3.8329E‑08 2.847E‑06
8 84,281 C2orf88 −6.91875921 Down 5.4551E‑09 1.115E‑06
9 51,473 DCDC2 −6.40015421 Down 6.9825E‑09 1.209E‑06
10 23,112 TNRC6B −6.27831174 Down 5.207E‑07 1.214E‑05

FDR: False discovery rate



Table S4: Gene ontology (molecular function) enrichment analysis of differentially expressed genes (top 10)

Index Gene set name Genes in overlap P FDR
1 GO: Nucleic acid‑binding transcripition factor activity 113 1.13E‑36 1.05E‑33
2 GO: Protein dimerization activity 110 2.54E‑36 1.18E‑33
3 GO: Enzyme binding 133 1.21E‑33 3.75E‑31
4 GO: Protein heterodimerization activity 67 1.14E‑32 2.64E‑30
5 GO: RNA polymerase II transcription factor activity sequence‑specific DNA binding 74 2.71E‑30 5.04E‑28
6 GO: Regulatory region nucleic acid binding 84 5.32E‑30 8.24E‑28
7 GO: Sequence specific DNA binding 94 2.81E‑29 3.73E‑27
8 GO: Ribonucleotide binding 127 2.01E‑27 2.33E‑25
9 GO: Identical protein binding 99 2.48E‑27 2.56E‑25
10 GO: Double‑stranded DNA binding 76 2.39E‑26 2.22E‑24

GO: Gene ontology; FDR: False discovery rate

Table S5: Kyoto Encyclopedia of Genes and Genomes signal pathway analysis of differentially expressed genes (top 10)

Index Pathway Genes in overlap P FDR
1 Systemic lupus erythematosus 27 2.61E‑17 1.05E‑14
2 MAPK signaling pathway 32 4.59E‑14 9.25E‑12
3 Pathways in cancer 33 2.59E‑12 3.48E‑10
4 Pentose and glucuronate interconversions 11 1.53E‑11 1.54E‑09
5 Cytokine–cytokine receptor interaction 26 1.07E‑09 8.63E‑08
6 Porphyrin and chlorophyll metabolism 11 1.71E‑09 0.000000115
7 Ascorbate and aldarate metabolism 9 2.82E‑09 0.000000162
8 Drug metabolism ‑ other enzymes 11 2.09E‑08 0.00000105
9 Starch and sucrose metabolism 11 2.59E‑08 0.00000116
10 ErbB signaling pathway 13 0.000000113 0.00000457

FDR: False discovery rate; MAPK: Mitogen‑activated protein kinase


