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ABSTRACT
Background: Bojungikki‑tang  (BJIT) is a traditional formula used to 
treat Gastrointestinal  (GI) diseases. Objectives: We investigated the GI 
motility functions in  vivo and the pacemaker potential in interstitial 
cells of Cajal  (ICCs) in vitro by BJIT. Materials and Methods: Intestinal 
transit rate  (ITR) and serum levels of GI hormones were investigated 
in mice. ICC‑induced pacemaker potential was evaluated using the 
electrophysiological method. Results: ITR values and the level of motilin 
significantly increased after treatment with BJIT. The BJIT‑induced ITR 
increase was related to the increase in the expression of a c‑kit. BJIT 
induced the pacemaker potential depolarizations and the frequency 
decrease of ICCs. Pretreatment with methoctramine resulted in the 
inhibition of BJIT‑induced depolarization of the pacemaker potential. 
However, BJIT‑induced effects were retained in the presence of 
1,1‑dimethyl‑4‑diphenylacetoxypiperidinium iodide. Furthermore, 
thapsigargin pretreatment resulted in the inhibition of BJIT‑induced effects. 
Moreover, BJIT blocked both transient receptor potential melastatin 7 
and calcium‑activated chloride  (transmembrane protein 16A) channels. 
Conclusion: These results indicate that BJIT can be considered a good 
medicine for controlling GI motility.
Key words: Bojungikki‑tang, interstitial cells of Cajal, intestinal transit 
rate, motilin, pacemaker potentials

SUMMARY
•  The levels of hesperidin, naringin, decursin, nodakenin, glycyrrhizinic acid, 

liquiritigenin, and ginsenoside Rg1 in Bojungikki‑tang  (BJIT) were analyzed 
using ultra‑performance liquid chromatography

•  BJIT increased the intestinal transit rate in mice through an increase in motilin
•  C‑kit expression was higher after BJIT treatment
•  BJIT depolarized the pacemaker potential of the interstitial cells of Cajal (ICCs) 
•  BJIT affected the ICC pacemaker potential through M2 receptors via the 

regulation of internal Ca2+ 
•  BJIT suppressed both transient receptor potential melastatin 7 and 

transmembrane protein 16A channels .

Abbreviations used: BJIT: Bojungikki‑tang; GI: Gastrointestinal; 
ICCs: Interstitial cells of Cajal; ITR: Intestinal transit rate; TRPM7: Transient 
receptor potential melastatin 7; TMEM16A: Transmembrane protein 16A; 
HEK: Human embryonic kidney.
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INTRODUCTION
Bojungikki‑tang  (BJIT; Hochu‑ekki‑to in Japanese) is a popular 
traditional medicine that has been long used in East Asian countries in 
Gastrointestinal  (GI) and respiratory diseases treatment.[1] It has been 
also used against general fatigue and lack of appetite and to treat stroke 
and cerebrovascular disease repellent due to qi deficiencies.[2,3] Among 
many roles, BJIT has been confirmed to be effective in recovering the 
functions of the digestive system.[4,5]

The GI tract is an important organ for food consumption, nutrient 
absorption, and waste discharge. GI motility disorders are known to 
affect the intestinal functions. There are many cells related to GI motility, 
and the typical cells are interstitial cells of Cajal  (ICCs).[6] ICCs are 
special pacemaker cells,[7‑9] and any damage to the number or structure 
of these ICCs may develop serious GI diseases.[10,11] Thus, ICCs play an 
essential role in normal GI motility control. However, BJIT’s efficacy in 
ICCs and its role in GI movement have not been investigated. Therefore, 

we investigated the effects of GI motility functions and pacemaker 
potentials of ICCs by BJIT.

MATERIALS AND METHODS
Instrumentation and reagents
BJIT was provided by HANKOOKSHINYAK Pharmaceutical Co. Ltd., 
(Nonsan, Republic of Korea). The components and amounts of BJIT are 
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described in detail in Table 1. Hesperidin, naringin, decursin, nodakenin, 
glycyrrhizinic acid, liquiritigenin, and ginsenoside Rg1 were purchased 
from Sigma‑Aldrich. A  high‑performance liquid chromatography 
method is the same as the previous research.[9]

Preparation of standard solutions
Appropriate amounts of compounds  (hesperidin, naringin, decursin, 
nodakenin, glycyrrhizinic acid, and liquiritigenin) were measured 
and treated with methanol. In brief, ginsenoside Rg1 was accurately 
measured and dissolved in 60% methanol. An undiluted solution was 
prepared at 1 μg/mL and appropriately diluted with methanol to obtain 
1, 5, and 10 ng/mL concentrations.

Quantitation of Bojungikki‑tang
The Waters ACQUITY™ Ultra Performance LC (UPLC) system (USA) 
equipped with Waters ACQUITY™ photodiode array detector (PDA) 
was used along with Waters ACQUITY™ BEH C18 column (1.7 μm, 
2.1 mm  ×  100 mm) and Empower software. With respect to the 
PDA wavelength, hesperidin and liquiritigenin were analyzed at 245 
nm and decursin, at 360 nm. In addition, naringin and nodakenin 
were analyzed at 280 nm and glycyrrhizinic acid was analyzed at 
285 nm [Table 2]. In addition, ginsenoside Rg1 was analyzed at 203 
nm [Table 3].

Intestinal transit rate measurement
With Evans blue (5%, w/v), intestinal transit rate (ITR) was measured. 
Thirty minutes after Evans administration, the ITR was measured. 
According to the regulations of Pusan National University’s Institutional 
Animal Care and Use Committee, animal care and experiments were 
conducted (PNU‑2019‑2462).

Measurement of gut hormones in the serum
Serum levels of gut hormones were checked using commercial 
kits (Abbkine Scientific Co., Ltd., Wuhan, China).

Western blotting
Anti‑transmembrane protein 16A  (TMEM16A; Abcam, Cambridge, 
UK), anti‑c‑kit  (Cell Signaling Technology, Danvers, MA, USA.), 
anti‑transient receptor potential melastatin 7  (TRPM7; Abcam, 
Cambridge, UK), and anti‑β‑actin  (Santa Cruz Biotechnology, Dallas, 
TX, USA) antibodies were used. All other procedures were carried out as 
previously described.[12]

Preparation of interstitial cell of Cajal clusters and 
patch‑clamp experiments
The ICC isolation method and solution are the same as the existing 
research method.[12,13] We used whole‑cell electrophysiological 
experiment. Experimental apparatus and solutions are identical to the 
previous study.[13,14]

Transient receptor potential melastatin 7 channel 
expression in human embryonic kidney 293 cells
TRPM7 (LTRPC7/pCDNA4‑TO) constructs were transiently 
transfected in human embryonic kidney  (HEK) 293 cells. The 
composition and testing methods of the solution used are the same as 
those of the past.[13,14]

Table 1: Composition of Bojungikki-tang used in the study. BJIT extract was 
obtained from HANKOOKSHINYAK Corp. (Nonsan, Chungcheongnam-do, 
Republic of Korea) in a pack of 2.06 g. BJIT: Bojungikki-tang

Latin name Scientific name Amount (g)
Astragali Radix                  Astragalus 

membranaceus 
0.41

Ginseng radix                   Panax ginseng C. A. 
Meyer 

0.30 

Atractylodis Rhizome        Atractylodes 
macrocephala Koidzumi 

0.46

Glycyrrhizae Radix              Glycyrrhiza uralensis 
Fischer 

0.34

Angelicae gigantis Radix           Angelica gigas Nakai 0.23
Citri unshii Pericarpium          Citrus unshiu Markovich 0.20
Cimicifugae Rhizoma         Cimicifuga heracleifolia 

Komarov
0.06

Bupleuri Radix                    Bupleurum falcatum 
Linne

0.06

Total 2.06

Table 2: The analysis condition of hesperidin, liquiritigenin, decursin, 
naringin, nodakenin and glycyrrhizinic acid

Time (min) 0.1% FA/
Water(%)

0.1% FA/ 
Acetonitrile(%)

Flow rate (ml/
min)

0 98 2 0.40
1.0 98 2 0.40
2.0 90 10 0.40
4.0 70 30 0.40
7.0 50 50 0.40
9.0 30 70 0.40

10.0 10 90 0.40
12.0 0 100 0.40
14.0 98 2
16.0 98 2 0.40

Table 3:  The analysis condition of Ginsenoside Rg1  

Time (min) Water (%) Acetonitrile(%)                    Flow rate  
(ml/min) 

0 85 15 0.40
1.0 85 15 0.40

14.0 70 30 0.40
15.0 68 32 0.40
16.0 60 40 0.40
17.0 45 55 0.40
19.0 45 55 0.40
21.0 10 90 0.40
22.0 10 90 0.40
23.0 85 15 0.40

Calcium‑activated chloride (transmembrane 
protein 16A) channel expression in human 
embryonic kidney 293 cells
TMEM16A  (pEGFP‑N1‑mANO1) constructs were transiently 
transfected in HEK 293 cells. The composition and testing methods of 
the solution used are the same as those of the past.[13,14]

Statistical analysis
Results are expressed as means ± standard error of mean. For multiple 
comparison, one‑way analysis of variance with Bonferroni’s post 
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hoc comparison was used. Analyses were performed using Prism 
6.0 (GraphPad Software Inc., La Jolla, CA, USA). P < 0.05 was considered 
significant.

RESULTS
Analysis of Bojungikki‑tang
The levels of hesperidin, naringin, decursin, nodakenin, glycyrrhizinic 
acid, liquiritigenin, and ginsenoside Rg1 in BJIT were analyzed using 
UPLC. The concentrations of the seven compounds are shown in Table 4 
and Figure 1.

Effects of Bojungikki‑tang on intestinal transit rate 
in mice
[Figure 2A]. Poncirus trifoliata was used to compare the efficacy of BJIT. 
Poncirus trifoliata (1 g/kg), which is known to exhibit the GI motility 
increase activity,[15] increased the ITR  (56.0% ± 3.1%; P  <  0.01). BJIT 
increased the ITR in a BJIT dose‑dependent manner (42.4% ± 3.6% at 
0.01 g/kg, 48.2% ± 4.4% [P < 0.01] at 0.1 g/kg, and 50.3% ± 4.6% [P < 0.01] 
at 1 g/kg) [Figure 2A]. These results suggest that BJIT increased the ITR 
in mice.

Variation in intestinal hormones following 
Bojungikki‑tang treatment
GI hormone levels in the mouse serum were evaluated by 
radioimmunoassay. The level of motilin  (MTL) in the GI was 
significantly elevated  [Figure  2Ba], but the levels of substance 
P  (SP)  [Figure  2Bb], somatostatin  (SS)  [Figure  2Bc], and vasoactive 
intestinal peptide  (VIP)  [Figure  2Bd] showed no significant changes 
after BJIT administration. These results suggest that the BJIT‑induced 
increase in ITR was represented by an increase in MTL.

Variation in the protein expression of 
transmembrane protein 16A, c‑kit, and 
transient receptor potential melastatin 7 after 
Bojungikki‑tang treatment
TMEM16A channel[16,17] or TRPM7 channel[8] is involved in the 
ICC activity. Further, c‑kit is associated with the population of 
ICCs.[18] Therefore, TMEM16A, TRPM7, or c‑kit may be a biomarker 
of GI motility. After treatment with BJIT, the expression of TMEM16A, 
TRPM7, and c‑kit was evaluated by Western blotting. The c‑kit 

expression was higher after BJIT treatment [Figure 3a]. C‑kit expression 
significantly increased by 25.1% (P < 0.01) after the treatment of mice 
with BJIT  [Figure  3b]. The expression of TMEM16A and TRPM7 in 
mice was almost unchanged after treatment with BJIT [Figure 3c and d].

Effects of Bojungikki‑tang on the pacemaker 
potential of the interstitial cells of Cajal
The ICCs induced the pacemaker potential generation with − 
56.7  ±  2.3 mV resting membrane potential and 23.1  ±  1.8 mV 
amplitude  (current‑clamp mode)  [Figure  4a]. The BJIT‑induced 
depolarization was 7.5 ± 0.5 mV (P < 0.01), 11.3 ± 0.7 mV (P < 0.01), 
and 18.4 ± 0.8 mV (P < 0.01), and the frequencies were 18.6 ± 1.0 cycles/
min, 7.6  ±  1.1  cycles/min (P  <  0.01), and 3.7  ±  1.1  cycles/
min  (P  <  0.01)  [Figure  4, n  =  19] at 10, 30, and 50 mg/mL BJIT, 
respectively. These results show that BJIT depolarized the pacemaker 
potential.

Confirmation of Bojungikki‑tang receptor types in 
interstitial cells of Cajal
Muscarinic receptors are expressed in the GI tract and are related to the 
altered motility of the GI smooth muscle.[19,20] The murine small intestinal 
ICCs only express muscarinic M2 and M3 receptors.[21] Therefore, the 
antagonist was used to identify receptors involved in BJIT‑induced 
pacemaker potential depolarization. ICC was administered muscarinic 
M2 receptor antagonist methoctramine or M3 receptor antagonist 
1,1‑dimethyl‑4‑diphenylacetoxypiperidinium iodide  (4‑DAMP). 
Pretreatment with methoctramine resulted in inhibition of the 
BJIT‑induced effects [Figure 5Aa]. Further, 4‑DAMP failed to interrupt 
the effects induced by BJIT [Figure 5Ab]. Depolarization and frequency 
were 2.4 ± 1.1 mV (P < 0.01) and 18.4 ± 1.2 cycles/min (P < 0.01) by 
methoctramine  [Figure  5B and C; n  =  6) and 11.2  ±  0.9 mV and 
8.8 ± 0.8 cycles/min by 4‑DAMP [Figure 5B and C; n = 7], respectively. 
These results suggest that BJIT affected the pacemaker potential by M2 
receptors.

Effects of an external or internal Ca2+ on 
Bojungikki‑tang‑induced pacemaker potential 
depolarization in interstitial cells of Cajal
Ca2+  regulation is thought to serve as a novel therapeutic strategy for 
controlling GI motility.[22] External Ca2+‑free solution suppressed the 
pacemaker potential, and then, BJIT induced pacemaker potential 

ba

Figure 1: UPLC profiles of seven major compounds identified in BJIT. (a) UPLC profile of commercial standard compounds. (b) UPLC profile of seven major 
compounds in BJIT. 245 nmol/L (hesperidin and liquiritigenin), 360 nmol/L (decursin), 280 nmol/L (naringin and nodakenin), 285 nmol/L (glycyrrhizinic acid), 
and 203 nmol/L (ginsenoside Rg1). UPLC: Ultra‑performance liquid chromatography; BJIT: Bojungikki‑tang
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depolarization [n = 6; Figure 5Da and E]. Thapsigargin, an inhibitor of 
Ca2+‑ATPase of the endoplasmic reticulum, suppressed the pacemaker 
potential, and BJIT failed to induce pacemaker potential depolarization 

under this condition [P < 0.01; n = 6; Figure 5Db and E]. These results 
suggest that the BJIT‑induced depolarization was dependent on the 
internal Ca2+.
No involvement of TRPM7 and TMEM16A channels was checked 
during BJIT‑induced pacemaker potential depolarization in ICCs.
The change in TRPM7 or TMEM16A channel activity is related to 
ICC activity.[8,16,17] BJIT  (50 mg/ml) decreased the TRPM7 inward 
and outward currents  [Figure  6a and b]. Relative densities were 
24.8% ± 3.4% (P < 0.01) at + 100 mV [Figure 6c]. TMEM16A currents 
were inhibited by BJIT [Figure 6d and e]. Relative densities after BJIT 
treatment were 33.9% ± 4.8% (P < 0.01) at + 100 mV [Figure 6f]. These 
results showed that BJIT suppressed both TRPM7 and TMEM16A 
channels.

DISCUSSION
We found that the ITR values significantly increased in response 
to BJIT treatment  [Figure  2A]. The level of MTL in the GI 
significantly increased [Figure 2Ba], but the levels of SP [Figure 2Bb], 
SS [Figure 2Bc], and VIP [Figure 2Bd] were unaffected by BJIT. The 
expression of c‑kit in the murine small intestine was considerably 

A B
Figure 2: Effects of BJIT on ITR and intestinal hormones in mice. (a) BJIT increased ITR. (b) The levels of GI hormones such as a: MTL, b: SP, c: SS, and d: VIP. 
*P < 0.05. **P < 0.01. CTRL, control; BJIT, Bojungikki‑tang; PF: Poncirus trifoliata Raf.; ITR: Intestinal transit rate; VIP: Vasoactive intestinal peptide

dc

b
a

Figure 3: Effects of BJIT on the expression of c‑kit, TMEM16A, and TRPM7 
in mice.  (a) Western blotting showed that the c‑kit expression was 
higher but that of TMEM16A and TRPM7 was almost unchanged.  (b‑d) 
The expression of c‑kit, TMEM16A, and TRPM7 is presented as band 
density relative to CTRL. **P < 0.01. CTRL: Control; BJIT: Bojungikki‑tang; 
TMEM16A: Transmembrane protein 16A; TRPM7: Transient receptor 
potential melastatin 7

Table 4:  Contents of the seven marker compounds of BJIT measured by UPLC   

Compound Content (ppm)
Hesperidin 25.57±0.88
Naringin 0.16±0.07
Decursin 1.68±0.24
Nodakenin 8.35±1.05
Glycyrrhizinic acid 80.38±3.02
Liquiritigenin 20.25±1.80
Ginsenoside Rg1 17.14±0.89
BJIT: Bojungikki-tang. UPLC: ultra-performance liquid chromatography
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higher after BJIT treatment [Figure 3a and b]. However, TMEM16A 
and TRPM7 expression was almost unchanged  [Figure  3c and 
d]. Furthermore, BJIT depolarized the pacemaker potential of 
ICCs  [Figure  4]. While methoctramine resulted in the inhibition 
of BJIT‑induced pacemaker potential depolarization  [Figure  5Aa], 

4‑DAMP failed to interfere with the effect of BJIT  [Figure  5Ab]. 
Pretreatment of cells with a Ca2+‑free solution failed to inhibit 
BJIT‑mediated effects  [Figure  5Da], while the pretreatment 
with thapsigargin resulted in inhibition of BJIT‑induced 
effects  [Figure  5Db]. Furthermore, BJIT blocked both TRPM7 and 

d

c

b

a

e

Figure 4: Effects of BJIT on the pacemaker potential of ICCs. (a‑c) The pacemaker activity of ICCs stimulated by BJIT (10–50 mg/mL) in the current‑clamp 
mode (I = 0). (d and e) Responses are summarized. **P < 0.01. CTRL: Control; BJIT: Bojungikki‑tang; ICCs: Interstitial cells of Cajal

A B C

D E
Figure  5: Effects of muscarinic receptor antagonists and external and internal Ca2+  on BJIT‑induced pacemaker potential depolarization of ICCs.  (Aa) 
Methoctramine inhibited BJIT‑induced responses. (Ab) 4‑DAMP had no effect on BJIT‑induced responses. (Da) In case of external Ca2+‑free solution, BJIT 
induced the pacemaker potential depolarization. (Db) Thapsigargin prevented the BJIT‑induced pacemaker potential depolarization. (B, C and E) Responses 
are summarized. **P < 0.01. CTRL: Control; BJIT: Bojungikki‑tang; ICCs: Interstitial cells of Cajal; 4‑DAMP: 1,1‑dimethyl‑4‑diphenylacetoxypiperidinium iodide



HYO EUN KWON, et al.: Bojungikki‑Tang and Intestinal Motility

S6� Pharmacognosy Magazine, Volume 17, Issue 5, January-March 2021 (Supplement 1)

d

cb

f

a

e

Figure  6: Effects of BJIT on overexpressed TRPM7 or TMEM16A in HEK 293 cells.  (a) BJIT blocked overexpressed TRPM7 currents.  (b) Current‑voltage 
relationships were measured before (1) and during (2) treatment. (d) BJIT blocked the overexpressed TMEM16A currents. (e) Current‑voltage relationships 
were measured before (1) and during (2) treatment. Responses to BJIT during overexpressed (c) TRPM7 or (f ) TMEM16A are summarized. **P < 0.01. A01 
(a selective TMEM16A inhibitor): A positive control. BJIT: Bojungikki‑tang; TRPM7: Transient receptor potential melastatin 7; HEK: Human embryonic kidney; 
A01, T16Ainh‑A01; TMEM16A: Transmembrane protein 16A

TMEM16A channels [Figure 6]. Therefore, BJIT served as an effective 
prokinetic agent and induced GI motility function.
Traditional medicine offers the advantage of exploiting the healing 
instinct inherent in nature and is an attractive alternative to compensate 
the limitations or shortcomings of modern medicine.[23] BJIT 
(also called Hochu‑ekki‑to in Japanese) is a traditional herbal formula 
in Asian countries.[4] BJIT comprises eight herbal components [Table 1]. 
In general, BJIT has been traditionally used to ameliorate severe 
weakness in Asian countries.[24] Recent studies have shown that it 
exhibits immunosuppressive properties against allergic rhinitis[25] and 
reduces IgE levels in atopic dermatitis.[26] It exerts antibacterial effects 
against Helicobacter infections[27] and suppresses arthritis.[28] In addition, 
BJIT protects the GI tract from radiation damage[29] and enhances the 
quality of life and food intake after surgery or cancer treatment‑related 
chemotherapy in addition to reducing the side effects associated 
with chemotherapy.[30,31] BJIT is also known to enhance the digestive 
functions[4,5] and increase the defense mechanisms against various 
infections.[4]

In the present study, pretreatment with methoctramine, but not 
4‑DAMP, resulted in the blockade of BJIT‑induced effects [Figure 5A]. 
These results suggest that BJIT affected ICC activity through the 
M2 receptors. The M2 and M3 receptors are in the GI tract and are 
involved in contraction.[32,33] ICCs express M2 and M3 receptors 
and regulate the slow wave in the GI tract.[21,34] M2 receptors play an 
essential role in controlling rhythmic activity, whereas M3 receptors 
exhibit regulatory functions.[35] However, a recent study reported that 
only M5 and nicotine receptors are expressed in mouse ICCs.[36] Liu 
et  al.[37] suggested that muscarinic receptors mediate the inhibitory 
effect of acetylcholine (ACh) on the ileal pacemaker potential in mice. 
Further, electrophysiological experiments revealed the ACh‑  and 

carbachol  (CCh)‑mediated increase in the pacemaker frequency 
and amplitude of ICCs derived from the mouse stomach[38] and the 
CCh‑mediated decrease in the pacemaker frequency and amplitude 
of ICCs.[39] Thus, further in‑depth research on the relevance and 
mechanism underlying ICCs and muscarinic receptors is warranted. 
Nevertheless, these results suggest that the effect of BJIT is similar to 
that of CCh and is mediated through M2 receptors.
ICCs are specialized gut pacemaker cells. GI motor disorders are related 
to various chronic diseases and affect the quality of life of patients.[40] As 
ICC dysfunction or loss has been involved in GI motor disease, ICCs 
can serve as valuable treatment targets.[10,11] Studies on GI motility 
are limited by the difficulty involved in obtaining human GI tissue 
samples.[6] Therefore, various studies on the control of GI motility under 
normal and diseased conditions have been conducted using ICCs. 
Furthermore, the pacemaker activity was known to be mainly associated 
with the activation of TMEM16A or TRPM7.[8,16,17] TRPM7 is expressed 
in cultured ICCs,[8] consistent with the expression of TMEM16A.[16,17] 
Therefore, TMEM16A and TRPM7 play key roles in the treatment of GI 
motility diseases. Further, ICCs express the proto‑oncogene c‑kit, which 
is essential for their functions and morphology.[18,41,42] In this study, 
BJIT inhibited the TRPM7 and ANO1 channels [Figure 6]. In addition, 
Western blotting revealed the higher expression of c‑kit in the murine 
small intestine after BJIT treatment  [Figure  3a and b]. However, the 
expression of TMEM16A and TRPM7 was almost unchanged following 
exposure to BJIT  [Figure  3c and d]. Therefore, we believe that the 
BJIT‑induced increase in ITR may be associated with the upregulation 
of c‑kit in ICCs.
GI motility is also regulated by various GI hormones such as VIP, MTL, SP, 
and SS.[43,44] These hormones play key roles in controlling GI motility.[45,46] 
Therefore, changes in hormone levels are involved in controlling GI 
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motility. In this study, MTL level considerably increased [Figure 2Ba], 
but the levels of SP [Figure 2Bb], SS [Figure 2Bc], and VIP [Figure 2Bd] 
remained unchanged after the administration of BJIT. Therefore, we 
believe that the increase in the secretion of the GI hormone MTL could 
be one of the key mechanisms involved in the BJIT‑mediated control of 
intestinal motility.

CONCLUSION
This study shows that (1) the BJIT‑induced increase in ITR values was 
related to the increase in the expression of c‑kit; (2) BJIT promoted ITR 
and increased the level of MTL without affecting the expression of SP, 
SS, and VIP in mice; (3) BJIT depolarized the ICC pacemaker potential 
through M2 receptors via internal Ca2+‑dependent pathways; (4) BHSST 
inhibited TRPM7 and TMEM16A channels. Taken together, BJIT could 
serve as an effective agent specific for GI motility.
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