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ABSTRACT
Background: Sophora tonkinensis Gagnep is an important medicinal 
plant in China. Previous research has focused on the rapid propagation 
and quality analysis of in vitro tissue culture plantlets. Few studies 
have focused on floral bud differentiation. Physiological and molecular 
mechanisms regulating floral bud differentiation have not been elucidated. 
Objective: We used paraffin sections and RNA‑seq and then analyzed 
changes in physiological, biochemical, and endogenous hormones to 
examine floral bud differentiation. Materials and Methods: Buds were 
harvested in mid‑March or early April. After sorting and cleaning, flower 
buds physiological and biochemical properties were measured and 
hormones were determined. Morphological observation of S. tonkinensis 
was carried out using paraffin sections. Results: The transition from the 
meristematic to the reproductive phase included changes in the shoot apical 
meristem morphogenesis and cell differentiation. The process includes 
floral buds initial differentiation and flower primordium differentiation 
stages; we defined eight stages in total. There was no significant change 
in soluble content, but soluble protein content gradually decreased. 
Activities of antioxidant enzymes changed significantly. Total chlorophyll 
(Chl a + b) content increased significantly. Endogenous hormone levels 
changed differently during floral bud differentiation. We identified 104,519 
expressed genes and 24 were involved in flowering. MADS‑box and 
AP family genes are involved in flower formation and 40 differentially 
expressed genes associated with floral bud differentiation were identified. 
Conclusion: The higher soluble sugar, protein, and chlorophyll content and 
the higher peroxidase activity were beneficial to floral bud differentiation 
of S. tonkinensis. The dynamic changes in hormone content contribute to 
differentiating floral buds.
Key words: Endogenous hormone, floral bud differentiation, 
morphological observations, physiological mechanism, RNA‑seq

SUMMARY
•  High levels of nutrition, photosynthesis, and enzyme activity were beneficial 

to floral bud differentiation of Sophora tonkinensis Gagnep
•  The dynamic changes in plant hormone can be beneficial for floral bud 

differentiation of Sophora tonkinensis Gagnep
•  The flowering of Sophora tonkinensis Gagnep is mainly determined by 

photoperiod pathway.

Abbreviations used: FAA: Formalin‑acetic acid‑alcohol; TO: Turpentine 
oil; BSA: Bovine serum album; EDTA: Ethylenediaminetetraacetic acid; 
PVP: Polyvinylpyrrolidone; POD: Peroxidase; SOD: Superoxide dismutase; 
NBT: Nitrotetrazolium blue chloride; Chl a: Chlorophyll a; Chl b: Chlorophyll 
b; IAA: Indole‑3‑acetic acid; ABA: Abscisic acid; GA: Gibberellic acid; 
ZT: Zeatin; RIN: RNA integrity number; DEGs: Differentially expressed genes; 
FPKM: Fragments per kilobase of exon per million fragments mapped; 
FDR: False discovery rate.
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ORIGINAL ARTICLE

INTRODUCTION
The transition from vegetative to reproductive growth is an irreversible 
process, which involves changes in buds apical meristem morphology 
and cell differentiation patterns. It is an important life‑history event for 
flowering plants.[1] This process can be divided into two main stages as 
follows: (1) the induction period involves biochemical modification of 
buds to form reproductive structures, and (2) the differentiation period 
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involves the differentiation of floral tissue. As the reproductive phase 
develops, the cell division rate of the shoot apical meristem increases.[2]

Sophora tonkinensis Gagnep (Leguminosae) is an important traditional 
medicinal plant. The roots and rhizomes are known as “Shandougen” in 
China and are mainly distributed in China and northern Vietnam.[3] The 
first description of S. tonkinensis was in the Kaibao Bencao (Song Dynasty 
973‑974 A. D.).[4] The roots and rhizomes have long been used to 
treat inflammatory disease conditions such as gingivitis, colitis, 
acute pharyngolaryngeal infection, sore throat, acute dysentery, and 
gastrointestinal hemorrhage.[5] A previous study indicated that aqueous 
extracts of S. tonkinensis roots have an inhibitory effect on human 
hepatoma SMMC‑7721 cells.[6] S. tonkinensis is a perennial plant, and it 
takes 3 years from seed germination to harvest as a medicinal material. 
However, its low seed yield makes it difficult to cultivate and limits our 
ability to augment wild resources.[7]

Floral bud differentiation has a direct effect on the quantity and quality of 
flowering and fruit set success rates, thus affecting the yield. There have 
been no detailed studies on these processes in this species. Therefore, 
the present study was undertaken to investigate the physiological and 
biochemical changes associated with different stages of floral bud 
differentiation in S. tonkinensis. The study modulated the differentiating 
floral buds process to improve the seed setting rate and thus increase the 
yield of this important traditional medicinal plant.

MATERIALS AND METHODS
Plant material
S. tonkinensis was collected from the cultivation field of Guangxi 
Botanical Garden of Medicinal Plants (22°51′	 1 and 108°19′	 9). 
The original plant was identified by the Guangxi Key Laboratory of 
Medicinal Resources Protection and Genetic Improvement at Guangxi 
Botanical Garden of Medicinal Plants. Three‑year‑old S. tonkinensis of 
the raceme phenotype were selected for use in the present study. Floral 
buds were harvested from the field in mid‑March or in early April. After 
sorting and cleaning, the initiation of a new leaf and the floral buds were 
collected every 3 days and were observed after the floral buds began to 
differentiate. In addition, when the process of floral bud differentiation 
began, the initiation of floral buds were collected every day until the end 
of differentiation.

Interior morphological analysis
Paraffin‑sectioning
The floral buds were fixed in formalin–acetic acid–alcohol (8:1:1 ratio 
of 50% ethanol: Formaldehyde: Glacial acetic acid) for 24–48 h at 25°C. 
Paraffin embedding was carried out with ethanol concentrations as 
follows: 60% for 2 h, 70% for 2 h; 2 h; 85% for 2 h; 90% for 1 h; 95% for 
1 h; 100% for 1 h, changed twice. Turpentine oil (TO): Ethanol (1:1) for 
1 h; TO, changed twice, for 1 h and each; paraffin‑saturated TO solution 
at 37°C for 48 h; paraffin wax (58°C–60°C), changed twice for 2 h and 
each; then, tissues were embedded into paraffin blocks. Paraffin blocks 
were trimmed to 10 μm using a microtome. A paraffin ribbon was placed 
in the slides and baked at 45°C–50°C for 2 h. Safranin O and fast green‑
stained sections, preserved by neutral balsam, were observed under the 
microscope (Leica Dm2000 microscope, Leica, Wetzler, Germany).[8]

Transmission electron microscopy
During the floral buds developmental period, freshly cut 3 mm3 segments 
of floral buds were fixed in 2.5% glutaric acid in 100 mM cacodylate 
buffer for 24 h at 4°C, then eluted three times with 50 mM cacodylate 
buffer, each time for 5  min. They were postfixed in 1% OsO4 in 50 
mM cacodylate buffer for 4 h at 4°C and then eluted three times with 

cacodylate buffer. The samples were dehydrated in an ethanol series and 
then acetone once and then embedded in epoxy resin. 60‑nm ultra‑thin 
sections were stained with uranyl acetate and lead citrate[9] and were 
observed under a HTACHI H‑7650 transmission electron microscope 
(HTACHI, Microsystems GmbH, Tokyo, Japan).

Physiological activity assays
Determination of osmolytes
Soluble sugar was determined by the anthrone method.[10] The 
absorbance at 640  nm was measured using methanol as a blank. The 
concentration of soluble sugar was calculated using a glucose solution 
as a standard.[10]

Determination of protein content
The total protein content of each enzyme extract was measured by 
the dye‑binding method[11] using a protein assay kit (Tiangen Biotech 
Co., Ltd., Beijing, China) and bovine serum albumin solution for the 
standard.

Determination of enzyme activity
Floral buds were frozen in liquid nitrogen immediately after harvesting 
and stored at −80°C until enzyme assays. Approximately 0.3  g of leaf 
material was homogenized in an ice bath in 3  mL 0.05 M phosphate 
buffer (pH  7.8) with 0.1 mM ethylenediaminetetraacetic acid and 1% 
(w/v) polyvinylpyrrolidone. The homogenate was centrifuged at 15,000 g 
for 15 min at 4°C. The supernatant was used for enzyme activity assays at 
4°C. Peroxidase (POD) activity was measured in the presence of 16 mM 
guaiacol and 10 mM H2O2 by monitoring the increase in absorbance 
at 470 nm in phosphate buffer.[12] The activity of superoxide dismutase 
(SOD) was assayed by monitoring its ability to inhibit the photochemical 
reduction of nitrotetrazolium blue chloride (NBT). One unit of SOD 
activity was defined as the amount of enzyme that produced a 50% 
inhibition of NBT reduction at 560 nm.[13]

Determination of pigment content
Chlorophyll (Chl a and Chl b) were extracted using 80% acetone. The 
absorbance of the extracts was measured using a Model UV‑752N 
spectrophotometer (Inesa, Shanghai, China) at 649 and 665  nm. The 
content of Chl a, Chl b and total chlorophyll (Chl a + b) were determined 
according to the method of Wellburn.[14]

Quantification of plant hormones by enzyme-
linked immunosorbent assay
Plant hormone concentration during floral bud differentiation was 
measured by enzyme‑linked immunosorbent assay (ELISA). The plant 
hormones ELISA kit (IAA, abscisic acid [ABA], GA3, and Zeatin [ZT]) 
used here was purchased from Shanghai Enzyme‑linked Biotechnology 
Co., Ltd. Floral buds from different periods were treated according to the 
manufacturer’s instructions. The experiment was repeated three times.

Molecular mechanisms assays
RNA extraction and cDNA library construction
Total RNA was extracted from floral buds at the same stages as those 
observed above using a HiPure HP Plant RNA Mini Kit (Magen, 
Guangzhou, China), with three biological replicates of each stage. The 
quality and purity of the RNA samples were assessed using an RNA 
6000 Nano LabChip Kit and a Bioanalyzer 2100 (Agilent Technologies, 
Santa Clara, CA, USA), using an RNA integrity number (RIN) of >7.0. Poly‑
(A)‑containing mRNA was purified using a NEBNext® Poly (A) mRNA 
Magnetic Isolation Module (New England Biolabs, Ipswich, MA, USA). 
Fragmentation buffer was added to disrupt the mRNA strands into short 
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Swiss‑Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG) and 
TrEMBL databases using BLASTp with a cutoff E‑value of 10−5. Gene 
Ontology (GO) annotation was acquired using InterProScan.[18]

Differential gene expression analysis
To analyze the differentially expressed genes (DEGs) during floral bud 
differentiation, RSEM[19] estimated the fragments per kilobase of exon per 
million fragments mapped (FPKM) value of each unigene based on the 
length of the gene and mapped read count. The detection of DEGs was 
performed using edgeR program[20] with the rigorous algorithm method. 
The threshold P value in multiple tests and analyses was determined by 
the false discovery rate (FDR). The DEGs were deemed significant by 
the following criteria: FDR <0.05 and the absolute value of Log2 (Ratio) 
and KEGG and GO enrichment was carried out with an in‑house R 
script using the hypergeometric test and P values were corrected against 
FDR. Significance was determined with a cutoff corrected P = 0.05. 
The expression data of the MADS‑box gene were analyzed using the 
software package of the heatmap tool on the BMKCloud platform 
(www.biocloud.net).

Figure  1: Anatomical changes in differentiating Sophora tonkinensis floral buds. (a) Illustrates the developmental course of Sophora tonkinensis in the 
“induction period” (I-III): Floral buds undifferentiated stage (i); preliminary stage of floral bud differentiation (II); Inflorescence differentiation stage (III). (b) 
Illustrates the developmental course of Sophora tonkinensis “differentiation period” formed by floral tissue (IV-VIII): Calyx differentiation stage (IV); corolla 
and pistil differentiation stage (v); stamen differentiation stage (VI); completion stage (VII, VIII). LP: Leaf primordium; IN: Inflorescence primordium; FL: Flower 
primordium; BR: Bract primordium; PE: Petal primordium; PP: Pistil primordium; SP: Stamen primordium; PS: Pollen sac; OL: Ovule; OV: Ovary

b

a

fragments, which were used as templates to synthesize the first‑strand 
cDNA using reverse transcriptase and random hexamer primers. The 
second‑strand cDNA was synthesized using buffer, dNTPs, RNase H, and 
DNA polymerase I. The double‑stranded cDNA fragments were subjected 
to end‑repair and adapter ligation. A uracil base in the adapter was excised 
with a USER enzyme. Adapter‑modified fragments were selected using gel 
purification, and PCR products were amplified to create the final cDNA 
library. The cDNA library was achieved by means of NEBNext® Ultra™ 
RNA Library Prep Kit for Illumina® (New England Biolabs).

Illumina sequencing, assembly, and annotation
The cDNA library was sequenced on an Illumina HiSeq 2500 sequencing 
platform (Illumina) to yield 2  ×  150‑bp paired‑end raw reads. The 
adapter sequences were read with a ratio of ambiguous N nucleotides 
>5%, and low‑quality sequences (quality score of <30) were removed 
from the raw reads using Trimmomatic.[15] Sequencing reads were de 
novo assembled using pooled reads from all replications and stages in 
the Trinity software package[16] with default parameters, and the result 
was further clustered and assembled using TIGR Gene Indices clustering 
tools under default parameters.[17] The assembled transcriptome 
sequences were named “unigenes.” All unigenes were searched against 



NAMUHAN CHEN, et al.: Physiological Mechanism and Developmental Events of Sophora tonkinensis

86 Pharmacognosy Magazine, Volume 16, Issue 67, January-March 2020

Statistical analysis
Multiple comparison testing was performed using one‑way ANOVA 
followed by a least significant difference (LSD) test. Statistical analyses 
were performed using the SPSS software version 22.0 (IBM Corp., 
Armonk, NY, USA). The results are expressed as means ± standard errors 
of the means. P < 0.05 was considered statistically significant.

RESULTS
Anatomical changes in differentiating floral buds
According to the morphological changes in stem tips and the 
characteristics of floral bud differentiation, the floral bud differentiation 
of S. tonkinensis was divided into eight stages as follows. Floral buds 
undifferentiated stage (I): The growth phase; mainly differentiated 
vegetative organs such as a leaf, stem, and axillary buds. The preliminary 
stage of floral bud differentiation (II): Shift from vegetative to 
reproductive growth from mid‑April and formation of inflorescence 
primordium growth cones in the leaf axilla with a distinct tunica‑corpus 
structure. The longitudinal division of growth cones is larger than in the 
transverse division, gradually extending into the inflorescence primordia 
axis. Inflorescence differentiation stage (III): with the continuous upward 
differentiation of the inflorescence primordia axis, the leaf‑like bracts 
primordia appears on both sides from the base upward in accordance 
with the spiral line. The floret primordia gradually mature from bottom 
to top. Calyx differentiation stage (IV): the apex of the hemispherical 
floret primordia gradually becomes wide and flat, forming small 
protrusions around the growth cone and only two protrusions were 
observed in the longitudinal section, which is the calyx primordia. 
Corolla and pistil differentiation stage (V): the apical tissue growth cone 
of the inner buds of the sepal continues to divide unequally. There were 
three protrusions in the longitudinal section. The middle protrusion was 
the pistil primordia, and the two sides were the corolla primordia. At 
this stage, the pistil primordia divide faster than the petal primordia. 
Stamen differentiation stage (VI): during the process of pistil primordia 
differentiation, small protuberances (stamen primordia) are formed on 
both sides of the pistil primordia. The completion stage of floral bud 
differentiation (VII, VIII): The division of floral bud differentiation is 
completed gradually. It was observed that the calyx and corolla were 
elongated, covering the internal organs of the flower and forming floral 
buds; the mature stamen anthers and filaments begin to differentiate; 
mature pistil stigma, style, and ovary begin to differentiate, and the style 
is hollow [Figure 1].

Observation of floral bud differentiation by 
transmission electron microscopy
During the undifferentiated stage of floral buds, it was observed 
that there were large vacuoles and more starch grains in the cells. 
After floral buds began to differentiate, the volume of cells gradually 
decreased owing to the decrease in vacuoles and the thickening of 
the cytoplasm. In this process, vacuoles and starch grains gradually 
reduced [Figure 2].

Osmolytes
The concentrations of soluble sugar and protein were analyzed during 
floral bud differentiation. The changes in soluble sugar content were 
basically the same. Soluble sugar increased slightly in the early stage 
(Stage I–III). At Stage IV, soluble sugar peaked at 18.57  ±  1.21  mg/g, 
which was 27.76% lower than that of stage VII. After that, the soluble 
sugar content in the buds returned to the previous level. This indicates 
that before floral bud differentiation, S. tonkinensis needs a certain 

accumulation of soluble sugar. During Stage VII, some soluble sugar 
was consumed to ensure the smooth process of floral bud differentiation 
[Figure 3a].
The protein content during the floral bud differentiation period of 
S. tonkinensis gradually decreased. In the early stage of floral bud 
differentiation, protein content decreased to a low level. During 
inflorescence primordia differentiation, the protein content increased 
by 17.75%. Then, the protein content in the stamen and primordia 
differentiation stage and the stamen and pistil differentiation stage 
increased significantly (P < 0.05). The protein content of S. tonkinensis 
was at a high level before floral bud differentiation began and it 
decreased rapidly at the beginning of the differentiation process 
[Figure 3b].

Antioxidant enzyme activities
As shown in Figure  3, the POD and SOD activities in S. tonkinensis 
significantly changed during floral bud differentiation and those changes 
were similar. Compared with the early stage (Stage I), at Stage VIII, 
POD and SOD activities decreased by 40.11% (P  <  0.05) and 26.01% 
(P < 0.05), respectively [Figure 3c and d].

Pigments
Chlorophyll is an important pigment used in photosynthesis to convert 
inorganic molecules or ions into organic biological molecules. With 
the initiation of floral bud differentiation, Chl a + b content increased 
significantly. Compared with Stage I, Chl a + b concentration increased 
by 37.90% (P  <  0.05) and 43.07% (P  <  0.05) at stages III and VII, 
respectively [Figure 3d].

Figure  2: Morphological analysis of differentiating Sophora tonkinensis 
floral buds. (a) Floral buds undifferentiated stage: A large nucleus and 
vacuoles, an obvious nucleolus and many starch granules (bar = 5 μm); 
(b-d) the change of the vacuole and starch granules as differentiating floral 
buds progresses: (b) vacuole and starch granules reducing (bar = 2 μm); 
(c) small vacuoles and starch granules (bar = 2 μm); (d) volume was 
reduced and vacuoles and starch granules gradually disappeared 
(bar = 2 μm). SG: Starch granules; V: Vacuoles
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The dynamic changes in plant hormones
Endogenous hormone levels were determined and compared among the 
different stages of floral bud differentiation (I–VIII). The levels of ZT 
increased gradually during floral bud differentiation. Compared with 
Stage I, ZT concentration increased by 16.52% at the completion of floral 
bud differentiation (Stage VIII) [Figure 4a].

The ABA concentration in buds was relatively low at Stages V and VI 
compared with Stages I–III. As shown in Figure 4b, plants maintained 
a relatively stable ABA content during the entire differentiation process 
with results showing that no significant difference was observed in each 
stage compared with Stage I (P > 0.05).
As for endogenous GA3 levels, I observed a progressive increase from 
Stage I to III (“induction period”) from 2.66 to 3.71  ng/g (P  <  0.05), 

Figure 3: Influence of differentiating floral buds on the (a) soluble sugarin, (b) protein (c) superoxide dismutase, (d) peroxidase and (e) total chlorophyll 
(Chl a + b) in Sophora tonkinensis grown Letters indicate statistical differences (P < 0.05) according to an least significant difference test; the same letter 
denotes no significant difference among treatments, n = 3
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followed by a progressive decrease from Stage IV to VI from 3.57 to 
2.93 ng/g (P < 0.05). During the entire differentiation process, GA3 levels 
increased by 37.43% (P < 0.05) [Figure 4c].
During the entire floral bud differentiation, endogenous IAA levels 
increased significantly, as shown in Figure 4d. Compared with the early 
stage (Stage I), at Stages IV and VIII, IAA levels increased by 31.95% 
(P < 0.05) and 45.72% (P < 0.05), respectively [Figure 4d].

Differentiating flower buds transcriptome 
sequencing, assembly, and functional annotation
Flowering pathway
The assembled genes were annotated to determine the functions of the 
genes and to predict their roles in the determination and development 
of flower buds in combination with the changes in expression levels. 
A  total of 104,519 unigenes were assembled, of which 34.53% were 
annotated using the GO database and 69.89% were annotated using 
the TrEMBL database. Research on genes focuses on genes with 
well‑defined functional annotations. Previous studies on the model 
plant Arabidopsis thaliana (L.) Heynh, have shown that there are five 
main regulatory pathways that should be considered when studying 
flowering. The regulatory pathways are photoperiod, vernalization, 
gibberellin, autonomic flowering, and age list the five factors.[21] The 
key genes of each pathway were searched for in the transcript data. 
CONSTANS (CO) encodes the main transcription factor involved in 
flowering that is controlled by the photoperiod pathway.[22,23] It was 
found that 24 of the assembled genes were CO based on transcription 
group. The expression trends of the remaining genes are shown in 
Figure 5.
Some CO was highly expressed at stage I, then the expression level 
began to decrease and then increased at the later stages. Some CO had 
an obvious increasing trend from Stage I to II. Considering the key 
stages of flower buds formation and inflorescence formation at Stages I 

and II, these CO may play a decisive role in the flowering process. Thus, 
the trends in CO expression in the transcription group showed that the 
flowering of S. tonkinensis was mainly regulated by the photoperiod 
pathway. We focused on the gene expression in Stages I and II of 
flower buds formation and flower primordia formation. Through an 
enrichment analysis of DEGs using the KEGG database, it was also 
found that several genes were being expressed in the photoperiod 
pathway [Figure 6].

Sequence analysis of flower development genes
Flower development is regulated by a variety of genes, among which 
the gene that encodes the MADS‑box protein plays an important role. 
MADS‑box is a transcription regulator that regulates the expression of 
genes.[24] Through clustering analysis of MADS‑box genes expression 
patterns, it was found that these genes can be roughly divided into 
two categories, as shown in Figure 7. In one category, they may play an 

Figure 5: Trends in CO expression

Figure 4: Dynamic changes of hormone content of differentiating floral buds on the (a) zeatin levels; (b) abscisic acid levels; (c) GA3 levels; (d) indole-3-acetic 
acid levels in Sophora tonkinensis grown. Letters indicate statistical differences (P < 0.05) according to an least significant difference test; the same letter 
denotes no significant difference among treatments, n = 3
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important role in the development of stamens and carpels in anaphase, 
while the other may play an important role in the development of petals 
and calyx in anthesis.

DISCUSSION
As people become more conscious of their health, the demand for 
Chinese herbal medicine increases; however, this demand cannot be met 

by wild resources alone. Therefore, the ability to produce high‑quality 
Chinese herbal medicine at high yields is important.[25] Propagation 
through high‑quality seeds is an important way to obtain germplasm 
resources. The floral bud differentiation process has a direct effect 
on the quantity, quality, and seed setting rate of plants.[26] Therefore, 
the ability to manipulate floral bud differentiation could help toward 
developing breeding strategies that could improve the yield and quality 
of S. tonkinensis.
Vegetative growth and accumulation of nutrients are the basis of floral 
bud differentiation and large amounts of nutrients are required. Whether 
the nutrients are sufficient determines the quality of the seed produced 
at the end of the process. Throughout the floral bud differentiation 
process, floral buds act as “metabolic sinks,” and their development is 
closely associated with carbohydrate metabolism.[27] Soluble sugar is an 
indispensable nutrient for floral bud differentiation and is also the main 
assimilative substance in plants, playing an important role in growth, 
development, and metabolism.[28] During flower induction, the increase 
in sucrose supply in the terminal buds of Vitis vinifera L. was observed 
by measuring phloem secretions.[29] As shown in Figure 3a, compared 
with the undifferentiated stage (Stage I), there was a higher soluble sugar 
content at the calyx differentiation stage (Stage IV), which corresponded 
to increased floral buds number [Figure  1]. Interestingly, there were 
no differences in soluble sugar content at Stages II–V (P > 0.05). This 
indicated that soluble sugar was continuously produced and transformed 
during floral bud differentiation.
Protein accumulation is important for flower formation, as was 
demonstrated in a previous study on strawberry plants that found protein 
accumulation at the beginning of floral bud differentiation.[30] The 
soluble protein of the chrysanthemum increased rapidly and maintained 
a high level during the initiation stage of floral bud differentiation.[31] 
A previous study reported that high protein content is not conducive 
to the initiation of the floral bud differentiation stage.[32] In the present 
study, the soluble protein content decreased rapidly at Stages I and II 
(P < 0.05). This indicates that higher protein content at the floral bud 
undifferentiated stage was not conducive to the initiation of flower 
bud differentiation. However, higher protein accumulation before flower 
bud differentiation was important for flower formation [Figure 3b].

Figure 6: Genes expression in Kyoto Encyclopedia of Genes and Genomes photoperiod pathway (Note: Red indicates increased genes expression)

Figure 7: Cluster analysis of MADS-box genes expression
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In addition to nutrient accumulation, a series of enzymes are involved 
in flower bud differentiation. During growth, a plant becomes more 
resistant to adverse conditions and thus more SOD is needed to 
scavenge radicals.[33] The activity of SOD increased rapidly, which 
could cause the plant to become senescent before flowering.[34] POD is 
related to respiration, and a higher level of POD activity is beneficial 
to vegetative growth and reproductive growth.[32] In the present study, 
SOD activity gradually decreased throughout the differentiation 
process, while POD activity maintained a high level during the 
initiation stage, which were beneficial for floral bud differentiation 
[Figure 3c and d].
The chlorophyll content of Rhododendron pulchrum Sweet was found 
to be positively correlated with the flowering rate during floral bud 
differentiation.[35] In the present study, the content of chlorophyll 
increased gradually throughout the differentiation process and peaked at 
its completion. This could be explained as a high content of chlorophyll 
being important for floral bud differentiation of S. tonkinensis [Figure 3e].
CTK is an important hormone involved in floral buds induction. The 
rapid increase in ZT content during floral bud differentiation [Figure 4a] 
indicates that the process requires a higher level of ZT.[36] Previous 
studies have shown that the increase in ZT content is beneficial to flower 
formation of Vanilla peanigoeia Ancer.[37] ABA can promote or inhibit 
flowering and it can cause branches to stop growing and antagonize GAs 
and thus ensure that the differentiated tissues have a suitable growth 
rate, which is beneficial to flowering.[38] However, it was observed no 
significant differences in ABA activity throughout the whole floral bud 
differentiation process [Figure 4b].
The effect of GA3 on floral buds is staged. The reduction of GA3 is 
necessary before floral bud differentiation. At the end of floral bud 
differentiation, GA3 promoted flower development. In the present study, 
similarly the GA3 content was lower at Stage I but higher in the stage 
of floral bud differentiation [Figure 4c]. The effect of IAA on flowering 
induction is indirect through regulating GA3, CTK and ABA in floral 
buds.[39] The results showed that IAA content increased during the whole 
differentiation process and might promote floral bud differentiation of 
S. tonkinensis [Figure 4d].
In this study, transcriptome information was obtained using 
high‑throughput sequencing of flower buds at eight stages of flower 
bud differentiation. A  large number of gene sequences involved in the 
development of S. tonkinensis flowers can be obtained by analyzing 
the data of the flower buds transcript group of S. tonkinensis. It was 
concluded that the flowering of S. tonkinensis is mainly determined by 
the photoperiod pathway.

CONCLUSION
On the basis of the present results, increased soluble sugar content, 
protein, chlorophyll and increased POD activity were beneficial to floral 
bud differentiation. Furthermore, changes in hormones contribute to 
floral bud differentiation. Other factors affecting floral bud differentiation 
and the corresponding cultivation measures to regulate floral bud 
differentiation deserve further study.
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