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ABSTRACT
Background: The active ingredients of Traditional Chinese Medicines 
(TCMs) vary greatly with the degree of stir‑frying; so, rapid analysis 
of the active content is very important for the processing of TCMs. 
Objective: In this study, near infrared reflectance (NIR) spectroscopy was 
used to develop a new method for the rapid online analysis of five free 
anthraquinones (aloe‑emodin, rhein, emodin, chrysophanol, and physcion) 
during the stir‑frying process for rhubarb. Materials and Methods: With 
partial least‑squares (PLSs) and artificial neural networks (ANN) regression, 
calibration models were generated based on five free anthraquinone 
contents, as measured by high‑performance liquid chromatography. 
Results: The results indicated that the 2 types of models were robust, 
accurate, and repeatable for five free anthraquinones. Moreover, PLS as 
the linear model was more suitable for developing the NIR models of 
the five free anthraquinones than ANN. The performance of the optimal 
models was achieved as follows: the coefficient of determination for 
prediction  (R2

pre) for aloe‑emodin, rhein, emodin, chrysophanol, and 
physcion was 0.9161, 0.9699, 0.9655, 0.9611, and 0.9724, respectively; the 
root mean square error of prediction was 0.0251, 0.0445, 0.3333, 0.0862, 
and 0.0211, respectively. Conclusion: The established NIR models could 
apply to determine the content of five free anthraquinones in rhubarb. This 
work demonstrated that NIR may be an effective online analysis method to 
reflect the quality of TCM industrial manufacturing processes.
Key words: Artificial neural network, anthraquinones, near infrared 
reflectance spectroscopy, partial least squares, rhubarb

SUMMARY
•  Near infrared reflectance (NIR) spectroscopy was used to develop a method 

for rapid online analysis of free anthraquinones in rhubarb
•  With partial least‑square and artificial neural networkregression, calibration 

models of NIR were generated based on five free anthraquinone contents 
measured by high‑performance liquid chromatography

•  The 2 calibration models were robust, accurate, and repeatable. NIR may 
be an effective online analysis method to reflect the quality of the Traditional 
Chinese Medicine industrial manufacturing process.

Abbreviations used: ANN: Artificial neural networks; 
COE: Constant offset elimination; D: Dimension; FDA: U. S. Food and 
Drug Administration; FT‑NIR: Fourier transform near infrared reflectance; 
HPLC: High‑performance liquid chromatography; LC‑MS: Liquid 
chromatography‑mass spectrometry; MLPs: Multilayer perceptrons; 
MMN: Min/Max normalization; MSC: Multiplicative scatter correction; 
MSE: Mean square error; NIR: Near infrared reflectance; OE: Offset 
elimination; PAT: Process analytical technology; PCA: Principal 
components analysis; PLS: Partial least squares; R2cal: Correlation 
coefficient of the calibration set; R2pre: Coefficient of determination for 
prediction; RMSECV: Root mean square error of cross‑validation; RMSEP: 
The root mean square errors of prediction; SD: Standards deviation; SLS: 
Straight line subtraction; SNV: Standard normal variate transformation; 
TCM: Traditional Chinese medicine; 1st D: First 
derivative; 2nd D: Second derivative.
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INTRODUCTION
According to the ICH Q8, it is not recommended that the quality of 
drugs is assured by testing, but by design and production.[1] The US Food 
and Drug Administration also advocated the use of process analytical 
technology (PAT) to improve pharmaceutical manufacturing and assure 
the quality of pharmaceutical production, which provided a reference 
for Traditional Chinese Medicine  (TCM) production.[2,3] In TCM 
production, one of the most urgent problems is uniform product quality. 
The current method for identifying the degree of processing is mostly 
based on appearance, which is not only subjective but also cannot reflect 
the content changes accurately.[4] One of the reasons TCMs has not gained 
acceptance in overseas markets is the inconsistent quality of TCM.

As an attractive PAT tool, near infrared reflectance (NIR) spectroscopy has 
been widely used in chemical and biological drug production.[3] In recent 
years, the technology has also been introduced into TCM industries, 
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including raw materials[5‑7] and process monitoring.[8‑10] In process 
monitoring, the most common methods of quantitative analysis 
are high‑performance liquid chromatography  (HPLC) and liquid 
chromatography mass spectrometry (LC‑MS). However, online analysis 
is not ideal for controlling TCM processing production, as it requires 
tedious sample preparation, time‑consuming sample analysis, and large 
amounts of solvent. NIR is a rapid analytical technique that can produce 
a spectrum in a few seconds. The most significant advantage of this 
technique is the nondestructive character of the analysis: a sample can be 
analyzed without or with only little sample preparation, maintaining the 
integrity of samples and saving preprocessing time.[11] It is even possible 
to measure packaged samples through the package material. Moreover, 
compared to HPLC and LC‑MS, NIR spectra provide more physical and 
chemical information. The above advantages show that NIR is an ideal 
PAT tool.
NIR absorbance peaks were relatively weak and highly overlapping; so, 
extracting effective information from NIR spectra and optimizing the 
raw spectrum data are essential for establishing an ideal model in NIR. 
Many multivariate data analysis methods have been used for developing 
NIR mathematical models, such as partial least‑squares (PLS), artificial 
neural networks  (ANN), multiple linear regression, and principal 
component analysis.[12‑15] Among these methods, PLS and ANN were the 
main study methods.
Rhubarb is a component in TCMs that are widely used for cathartic, 
antidotal, and febrifugal purposes.[16,17] Rhubarb, a species from 
Polygonacea in the genus Rheum, was identified as the dried rhizome 
and root of Rheum plamatum L., Rheum tanguticum Maxim. ex Balf., 
and Rheum officinale Baill. in Chinese pharmacopoeia.[18] In general, 
rhubarb must be processed to alleviate its strong laxative effect. At 
present, stir‑frying with rice wine is the most commonly used method 
in rhubarb processing, in which rhubarb is saturated with rice wine for 
several hours and stir‑fried to dryness.[19,20]

At present, the application of NIR in rhubarb focuses on qualitative 
analysis that could distinguish official and unofficial samples.[21‑23] 
However, they cannot reflect the content of active ingredients in rhubarb 
concretely. This research mainly reports quantitative analysis with an 
NIR model in rhubarb. During the stir‑frying of rhubarb, the content 
of free and combined anthraquinones is changed. In this study, the five 
free anthraquinones  (aloe‑emodin, rhein, emodin, chrysophanol, and 
physcion) were chosen as the detection index for stir‑frying process. As 
NIR had shown enormous potential and gained wide acceptance for the 
analysis of TCM, it is urgent to establish NIR method for the quality 
analysis of rhubarb.
In this study, six batches of rhubarb collected from different origins were 
used to develop the NIR models. Two types of modeling were applied: 
PLS as linear regression and ANN as nonlinear regression. The results 
indicated that both of them were robust, accurate, and repeatable for 
online analysis and quality control. Moreover, PLS performed better in 
the development of NIR models of five free anthraquinones than did 
ANN. It showed that NIR has great potential in the TCM industrial 
manufacturing process.

MATERIALS AND METHODS
Materials and reagents
Six types of rhubarb were obtained from 4 provinces in China (Sichuan, 
Gansu, Shaanxi, and Qinghai). Aloe‑emodin  (purity  >98.1% by 
HPLC), rhein (purity  >99.3% by HPLC), emodin  (purity  >98.7% 
by HPLC), chrysophanol  (purity  >99.2% by HPLC), and 
physcion (purity >99.0% by HPLC) were from the National Institute 
for Food and Drug Control  (Beijing, PR China). Rice wine was 

purchased from the Kuaijishan Shaoxing Wine Company (Shaoxing, 
Zhejiang, PR China). HPLC‑grade methanol was obtained from 
Tianjin Kermel Chemical Reagent Company  (Tianjing, PR China). 
Water was purified by an ultrapure water instrument. All other 
reagents were of analytical grade.

Sample preparation
One type of rhubarb was randomly selected from six types to research the 
main factors affecting the process and the optimum process condition. 
According to the Chinese Pharmacopoeia  (volume II, 2015 edition), 
stir‑frying temperature, rice wine content, and sealed moistening time 
were chosen as the main research factors for the optimum process 
conditions. Using the content of total free anthraquinones as a reference, 
the optimum process conditions were determined using the orthogonal 
test design of L25 (53) [Table 1]. According to orthogonal test results, the 
stir‑frying temperature, as the single control factor, was used to research 
the change in rhubarb during the process. Each batch of rhubarb received 
7.5% (v/v) rice wine and was sealed for 3 h, and the stir‑frying samples 
were collected at 30°C, 90°C, 110°C, 130°C, 150°C, 170°C, 180°C, 
190°C, 200°C, and 210°C, respectively. The temperature of the samples 
was controlled using a GM320 infrared thermometer  (BENETECH 
Company, Shenzhen, Guangdong, RP China). Therefore, each type 
of rhubarb contained 3 batches, and each batch contained 10 degrees 
of stir‑frying samples, except that the type of rhubarb used for the 
orthogonal test had only 2 batches.
All samples were milled into 100‑mesh powder and dried in a silica gel 
desiccator for at least 7 h at room temperature (30°C) until the weight 
loss was <0.0003 g to ensure that moisture was not an interfering factor.

Near infrared reflectance spectrum collection
NIR spectra were acquired using a QuasIR 3000™ FT‑NIR 
spectrometer  (Galaxy Scientific Inc., Nashua, New Hampshire, USA) 
equipped with a 98mm sample cup and a sample spinner. The NIR 
spectrometer was operated using eFTIR software  (Essential FTIR 
V3.00.047). The spectra were acquired at a resolution of 8 cm−1 over a 
wavelength range of 12000–4000 cm−1 with 32 scans per spectrum. The 
samples were scanned as powders. The dataset consisted of 170 samples, 
and two spectra were registered per sample  [Figure  1a]. The averaged 
spectrum was used for computations. 

High-performance liquid chromatography 
reference value collection
According to the Chinese Pharmacopoeia (volume II, 2015 edition), the 
Agilent 1100 HPLC system (Agilent Technologies Inc., USA) consisting 
of a UV–Vis detector was used for the quantitative determination of 
five free anthraquinones.  A stir‑frying sample was extracted for 1  h 
with 25 mL of methanol in a round‑bottomed flask and filtered, and the 
subsequent solution was used for determination. Free anthraquinone 
determination was performed under isocratic conditions, with a mobile 
phase of methanol – 0.1% phosphorous acid (85:15) at a flow rate of 1 mL/

Table 1: Orthogonal design of processed rhubarb

Levels Factors

A: Contents of 
rice wine (%)

B: Sealed 
moistening time (h)

C: Stir‑frying 
temperature (°C)

1 5 1 90
2 7.5 3 120
3 10 6 150
4 12.5 9 180
5 15 12 210
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Figure  1: Spectra of different spectral pre-processing methods for 
PLS and ANN.  (a) Raw specta;  (b) constant offset elimination;  (c) Min/
max normalization; (d) MSC;  (e) Straight line subtraction;  (f ) Standard 
normal variate transformation;  (g) 1st  D;  (h) 2nd  D;  (i) 1st  D  +  MSC;  (j) 
1st D + SLS; (k) 1st D + SNV. 1st D: Fist derivative; 2nd D: Second derivative; 
MSC: Multiplicative scatter correction; SLS: Straight line subtraction; SNV: 
Standard normal variate transformation; PLS: Partial least square; ANN: 
Artificial neural network
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min at 35°C. Separation was performed on a Kromasil C18 column  (5 
μm, 250  mm  ×  4.6  mm) and monitored by UV detection  (UVD; 
λ = 254 nm). The injection volume was 10 μL. The identification of five 
free anthraquinones  (aloe‑emodin, rhein, emodin, chrysophanol, and 
physcion) was based on retention time, and quantification was achieved 
by external standard calibration.

Spectral preprocessing
The development of NIR calibration models primarily consists of two 
types: linear regression which heavily relies on a linear relationship 
between the reference value and the intensity of the NIR spectra and 
PLS, which is the most widely used method in this type; another 
is nonlinear regression and ANN was most widely used to reflect 
the nonlinear effects.[24‑27] In this study, the linear relationship was 
established by PLS models with OPUS 7.5 software  (Bruker Optik, 
Ettlingen, Germany). The nonlinear relationship was established 
by ANN models with NeuroSolutions 7  (Neurodimension Inc., 
Gainesville, USA). The specific operating process and methods are 
introduced briefly in Figure 2.
To obtain the best NIR models, different spectral pretreatments were 
tested to reduce unwanted variation due to sources not related to 
the properties of interest. The spectral pretreatment methods of PLS 
contain 10 methods including constant offset elimination (COE), min/
max normalization  (MMN), multiplicative scatter correction  (MSC), 
straight line subtraction  (SLS), standard normal variate 
transformation (SNV), fist derivative (1st D), second derivative (2nd D), 
1st D + MSC, 1st D + SLS, and 1st D + SNV. These preprocessing methods 
were investigated to establish the model for five free anthraquinones.
The most widely used spectral preprocessing methods for ANN model 
were OE, MMN, and SNV. Moreover, all spectra were smoothed using 
the Savitzky–Golay algorithm first to improve spectral smoothness and 
reduce the interference of noise. The optimum smooth points were 13.

RESULTS AND DISCUSSION
Optimized method of processing
In accordance with the L25  (53) orthogonal experiment designed for 
the three factors (stir‑frying temperature, rice wine content, and sealed 
moistening time) and five levels, the optimal process condition was 

Figure 2: Specific operating process and methods in this study
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obtained using the content of total free anthraquinones as a reference. 
As shown in Table 2, the primary factor and minor factor influencing 
the content of five free anthraquinones during the stir‑frying process 
were determined by range analysis. R was the level range that reflected 
the amplitude of the fluctuation test index when the corresponding 
factor was changed. A larger value of R indicates a greater influence of 
this factor. The result indicated that the stir‑frying temperature was the 
primary factor, the rice wine content was the second factor, and the sealed 
moistening time was the last factor. K  was the sum of the measuring 
values at the same level for each factor. A larger value of K indicates a 
better level. This indicated that the optimized method of processing was 
A2B2C5. In other words, the optimized methods were adding 7.5% (v/v) 
rice wine, sealing for 3 h and stir‑frying at 210°C.

High-performance liquid chromatography 
reference data
The five free anthraquinones of rhubarb at different degrees of stir‑frying 
vary greatly. As shown in Table 3, with increasing temperature, the overall 
trend in the content of five free anthraquinones increased. Compared 
with the contents of five free anthraquinones from unprocessed samples, 
there were significant differences between the unprocessed and processed 
groups (P < 0.05). The change in chrysophanol was most significant in 
the five free anthraquinone, increasing approximately 0.2% during the 
stir‑frying process.

Development of the partial least-square model
In PLS model, all 170 samples were randomly divided into two subsets. 
The first subset was called calibration set with 136 samples to be used to 
establish the calibration model, while the other one was called prediction 
set with 34 samples to be used for testing the robustness of model. Table 4 
shows the HPLC reference data in calibration and prediction sets. As 
seen in Table 4, the range of reference data of each anthraquinone in the 
calibration set almost covers the range in the prediction set and their 
standards deviation (SD) between the calibration and prediction sets are 
no significant differences. Therefore, the distribution of the samples is 
appropriate both in the calibration and the prediction sets.
The performance of the PLS model was evaluated according to four types of 
parameters, i. e., the root mean square error of cross‑validation (RMSECV), 
the root mean square error of prediction (RMSEP), and the coefficient of 
determination for calibration and prediction (R2

cal, R
2

pre). The optimal model 
was selected based on the higher R2

cal, R
2

pre, as well as a lower RMSECV and 
RMSEP.[15] Table 5 shows the result of the PLS calibration model, and the 
optimized models of five free anthraquinones are highlighted in bold.
The three major parameters for developing the PLS model are 
the spectral preprocessing method, the spectral region, and the 
dimension  (D) factor. The spectral pretreatment methods of PLS 
contain 10 methods in total, including COE, MMN, MSC, SLS, SNV, 
1st D, 2nd D, 1st D + MSC, 1st D + SLS, and 1st D + SNV. All were applied 
to each NIR spectrum to shift the baseline, enhance the spectral 
features, and eliminate noise and matrix background interference 
so that the relevant information can be extracted more fully. These 
preprocessing methods were applied to establish the model for five 
free anthraquinones. Figure 1 shows that spectra were pretreated with 
these methods. The optimal preprocessing methods for aloe‑emodin, 
emodin, rhein, physcion, and chrysophanol were 1st  D  +  MSC, 2nd, 
1st + MSC, SLS, and 1st + SLS, respectively.
The different spectral regions contain different spectral signals. 
Extracting the effective wavelength range can improve the efficiency and 
accuracy of calibration models. To select the optimal NIR spectral region 
for the PLS model, at first, several wavelength ranges were extracted 

Table 2: Results of L25 (53) orthogonal test

K Factors

A B C
K1 6.68 6.59 2.48
K2 7.43 7.38 2.30
K3 5.76 6.66 4.45
K4 6.38 6.21 11.41
K5 7.14 6.55 12.75
R 0.34 0.24 2.09
Optimal plan A2 B2 C5

Table 3: Content changes of five free anthraquinones between unprocessed and stir-frying rhubarbs

Content (%) Unprocessed Stir‑frying temperature (°C)

30 90 110 130 150 170 180 190 200 210
Aloe‑emodin 0.1536a 0.1496 0.1608 0.1657 0.1718 0.1725 0.1881 0.1851 0.1993 0.2154 0.2059
Rhein 0.1947b 0.1661 0.1845 0.1951 0.1958 0.2081 0.2111 0.2273 0.2272 0.2645 0.2507
Emodin 0.1857c 0.1807 0.1898 0.1902 0.2007 0.2006 0.2173 0.2238 0.2387 0.2536 0.3099
Chrysophanol 0.6878d 0.7215 0.7375 0.7811 0.8248 0.7871 0.8521 0.8299 0.9321 0.9509 0.9442
Physcion 0.2383f 0.2011 0.2081 0.2181 0.2291 0.2192 0.2494 0.2449 0.2762 0.2933 0.2811

aP<0.05; bP<0.05; cP<0.05; dP<0.05; fP<0.05, compared with processed group

Table 4: References data in the calibration and the prediction set

Subsets Components (%) PLS ANN

Range Mean SD Range Mean SD
Calibration set Aloe‑emodin 0.0430‑0.3197 0.1854 0.0569 0.0430‑0.3197 0.1854 0.0576

Rhein 0.0079‑0.6066 0.2099 0.1935 0.0079‑0.6066 0.2035 0.1898
Emodin 0.0360‑0.5430 0.2250 0.1240 0.0368‑0.5391 0.2184 0.1232
Chrysophanol 0.1013‑1.7257 0.8823 0.2990 0.1082‑1.7257 0.8753 0.2994
Physcion 0.0479‑0.5766 0.2454 0.0991 0.0479‑0.5766 0.2405 0.0976

Prediction set Aloe‑emodin 0.0516‑0.3001 0.1800 0.0623 0.0452‑0.2537 0.1755 0.0609
Rhein 0.0105‑0.5191 0.2010 0.1849 0.0109‑0.5363 0.2468 0.2050
Emodin 0.0453‑0.5091 0.2098 0.1266 0.0360‑0.5430 0.2537 0.1366
Chrysophanol 0.1281‑1.4048 0.8269 0.3060 0.1013‑1.2718 0.8372 0.3148
Physcion 0.0601‑0.4945 0.2297 0.0918 0.0480‑0.4295 0.2573 0.0999

SD: Standard deviation; PLS: Partial least squares; ANN: Artificial neural networks
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Table 5: Results of different spectral pretreatment methods in partial least squares model

Contents Pretreatment method Spectral range (cm‑1) D Calibration set Prediction set

RMSECV R2
cal RMSEP R2

pre

Aloe‑emodin 1st D + MSC 7501‑5446.2, 4602.2‑4247 15 0.0205 0.8625 0.0251 0.9161
MSC 9403‑6099.3, 5450.1‑4598.4 12 0.0200 0.8620 0.0390 0.8145
1st D 9403‑7497.2, 6103.1‑4598.4 18 0.0210 0.8535 0.0398 0.8108
1st D + SLS 9403‑7497.2, 6103.1‑5446.2, 4602.2‑4247 15 0.0220 0.8414 0.0353 0.8319
2nd 9403‑4247 13 0.0217 0.8382 0.0350 0.8317
1st + SNV 9403‑5446.2, 4602.2‑4247 18 0.0230 0.8310 0.0288 0.8977
SLS 6103.1‑4598.4 18 0.0227 0.8255 0.0294 0.8834
SNV 7501‑5446.2, 4602.2‑4247 19 0.0236 0.8176 0.0281 0.8983
COE 7501‑5446.2 19 0.0237 0.8070 0.0342 0.8463
MMN 7501‑6099.3, 4602.2‑4247 12 0.0242 0.8012 0.0364 0.8121

Rhein 2nd 7501‑4247 16 0.0322 0.9708 0.0445 0.9699
1st + SNV 7501‑5446.2 18 0.0366 0.9620 0.0529 0.9570
1st + SLS 8452‑7497.2, 6103.1‑4247 19 0.0366 0.9614 0.0426 0.9739
COE 9403‑7497.2, 6103.1‑5446.2 16 0.0367 0.9614 0.0907 0.8706
1st 6103.1‑4247 19 0.0389 0.9572 0.0456 0.9693
1st + MSC 7501‑5446.2, 4602.2‑4247 17 0.0390 0.9559 0.0468 0.9676
SNV 6103.1‑4247 19 0.0409 0.9522 0.0586 0.9497
MSC 6103.1‑4247 18 0.0415 0.9512 0.0560 0.9534
SLS 9403‑7497.2, 6103.1‑4598.4 17 0.0418 0.9507 0.0534 0.9577
MMN 6103.1‑4598.4 20 0.0443 0.9435 0.0522 0.9591

Emodin 1st + MSC 9403‑5446.2, 4602.2‑4247 10 0.0232 0.9624 0.0333 0.9655
MMN 9403‑4598.4 16 0.0250 0.9569 0.0534 0.9255
1st + SNV 9403‑5446.2 13 0.0264 0.9550 0.0372 0.9564
SNV 6103.1‑4598.4 17 0.0273 0.9500 0.0295 0.9721
MSC 6103.1‑4598.4 16 0.0277 0.9481 0.0297 0.9719
COE 6103.1‑4598.4 17 0.0287 0.9450 0.0330 0.9652
1st 9403‑7497.2, 6103.1‑4247 17 0.0303 0.9419 0.0508 0.9334
SLS 9403‑6099.3, 4602.2‑4247 16 0.0306 0.9362 0.0473 0.9324
2nd 6103.1‑4247 14 0.0327 0.9301 0.0269 0.9788
1st + SLS 9403‑5446.2 14 0.0333 0.9284 0.0411 0.9464

Chrysophanol SLS 9403‑7497.2, 6103.1‑5446.2, 4602.2‑4247 12 0.0643 0.9527 0.0862 0.9611
1st + MSC 7501‑5446.2, 4602.2‑4247 13 0.0603 0.9591 0.1170 0.9275
MSC 7501‑4247 15 0.0620 0.9572 0.1190 0.9237
SNV 7501‑5446.2, 4426.5‑4247 16 0.0534 0.9684 0.1250 0.9137
MMN 9403‑7497.2, 6103.1‑5446.2, 4602.2‑4247 15 0.0663 0.9487 0.1060 0.9368
1st + SNV 9403‑5446.2 11 0.0681 0.9467 0.1100 0.9381
1st + SLS 9403‑5446.2, 4602.2‑4247 11 0.0714 0.9414 0.1100 0.9374
COE 6103.1‑5446.2, 4602.2‑4247 8 0.0760 0.9330 0.0919 0.9555
2nd 7501‑4247 13 0.0772 0.9297 0.0910 0.9584
1st 9403‑7497.2, 6103.1‑5446.2, 4602.2‑4247 11 0.0809 0.9226 0.0835 0.9624

Physcion 1st + SLS 9403‑5446.2, 4602.2‑4247 13 0.0199 0.9596 0.0211 0.9724
MSC 9403‑6099.3, 5450.1‑4247 17 0.0193 0.9602 0.0441 0.8795
1st + MSC 7501‑5446.2, 4602.2‑4247 14 0.0196 0.9600 0.0227 0.9681
1st + SNV 9403‑5446.2, 4602.2‑4247 12 0.0197 0.9610 0.0245 0.9628
MMN 9403‑5446.2, 4602.2‑4247 15 0.0196 0.9588 0.0701 0.7450
1st 9403‑5446.2, 4602.2‑4247 14 0.0203 0.9583 0.0293 0.9475
SNV 7501‑5446.2 18 0.0210 0.9555 0.0247 0.9631
SLS 9403‑6099.3, 5450.1‑4247 19 0.0202 0.9551 0.0285 0.9502
2nd 7501‑6099.3, 4602.2‑4247 13 0.0209 0.9525 0.0286 0.9595
COE 9403‑5446.2, 4602.2‑4247 17 0.0217 0.9525 0.0295 0.9465

OE: Offset elimination; COE: Constant OE; MMN: Min/max normalization; MSC: Multiplicative scatter correction; SLS: Straight line subtraction; SNV: Standard 
normal variate transformation; 1st D: Fist derivative; 2st D second derivative; RMSEP: Root mean square error of prediction; RMSECV: Root mean square error of 
cross‑validation

from the basis of the peak valley as shown in Figure 1a and then were 
used to establish the model; ultimately, the region that had a better 
performance was chosen. As shown in Table 5, different spectral regions 
were examined for the five free anthraquinones. The best spectral regions 
for each anthraquinone were as follows: aloe‑emodin  ‑  7501–5446.2 
and 4602.2‑4247 cm−1; rhein ‑ 7501‑4247 cm−1; emodin ‑ 9403–5446.2 
and 4602.2–4247 cm−1; chrysophanol ‑ 9403–7497.2, 6103.1–5446.2 and 
4602.2‑4247 cm−1, and physcion ‑ 9403–5446.2 and 4602.2‑4247 cm−1.
Each PLS model has an optimized D. In other words, if D is too low or 

too high, it will cause “under‑fitting”; if D is not sufficient to explain 
the complex variability of the spectral data, this is “over‑fitting” and 
spurious incorporated noise will be introduced.[28‑30] Therefore, either 
lower or greater D will decrease the predictability, robustness, and 
accuracy of the PLS model. Figure 3 shows changes in R2

cal with D for the 
model of physcion. The value of R2

cal increased with increased D, which 
indicates that the model became increasingly robust. The optimal D for 
aloe‑emodin, rhein, emodin, chrysophanol, and physcion was 15, 16, 10, 
12, and 13, respectively.
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Figure  3: Relationship between R2
cal and D of physcion in the partial 

least-square model

Table 6: Results of different spectral pretreatment methods in artificial neural networks model

Contents Pretreatment 
method

Number of 
hidden neurons

Transfer 
function

threshold 
value

Step 
size

Momentum MSE R2
cal RMSEP R2

pre

Aloe‑emodin SNV 8 TanhAxon 0.0001 0.8 0.6 0.0166 0.9580 0.0272 0.8902
MMN 9 TanhAxon 0.01 0.9 0.7 0.0214 0.9289 0.0377 0.8326
OE 11 TanhAxon 0.001 1.0 0.9 0.0130 0.9744 0.0371 0.8229
Untreated 8 TanhAxon 0.001 0.5 0.9 0.0143 0.9715 0.1176 0.1591

Rhein MMN 12 TanhAxon 0.005 0.7 0.9 0.0330 0.9850 0.0856 0.9080
SNV 8 TanhAxon 0.0001 0.8 0.7 0.0292 0.9882 0.1039 0.8784
OE 7 TanhAxon 0.005 0.9 0.8 0.0333 0.9850 0.1099 0.8593
Untreated 7 TanhAxon 0.005 0.7 0.7 0.0334 0.9853 0.1126 0.8102

Emodin SNV 12 TanhAxon 0.0001 0.8 0.9 0.0133 0.9937 0.0539 0.9187
MMN 12 TanhAxon 0.0001 0.8 0.7 0.0196 0.9864 0.0679 0.8702
Untreated 14 TanhAxon 0.001 1.0 0.8 0.0158 0.9912 0.0730 0.8475
OE 11 TanhAxon 0.005 0.7 0.9 0.0249 0.9777 0.0842 0.7897

Chrysophanol SNV 10 TanhAxon 0.0001 1.0 0.9 0.0556 0.9829 0.1813 0.8381
MMN 7 TanhAxon 0.005 0.9 0.2 0.0899 0.9549 0.1640 0.8309
Untreated 9 TanhAxon 0.001 0.6 0.9 0.0485 0.9896 0.1906 0.8069
OE 8 TanhAxon 0.0001 0.9 0.9 0.0542 0.9837 0.2016 0.7970

Physcion SNV 9 TanhAxon 0.001 0.9 0.9 0.0156 0.9878 0.0329 0.9419
OE 5 TanhAxon 0.001 0.9 0.9 0.0187 0.9827 0.0532 0.8749
Untreated 10 TanhAxon 0.0001 0.9 0.6 0.0154 0.9907 0.0528 0.8422
MMN 8 TanhAxon 0.01 0.6 0.7 0.0395 0.9230 0.0532 0.8152

OE: Offset elimination; COE: Constant OE; MMN: Minimum/maximum normalization; SNV: Standard normal variate transformation; MSE: Mean square error; 
RMSEP: Root mean square error of prediction

Development of the artificial neural network model
The ANN model data were also randomly divided into two subsets: the 
calibration set and prediction set. However, the calibration set contained 
two groups: the training subset and test subset. 151 samples were selected 
randomly as a calibration set; 128 served as a training subset used to 
estimate ANN model parameters; 23 served as the test subset used to test 
the calibration model during the training process; and the 19 remaining 
samples were taken as the prediction set. The HPLC reference data in 
calibration and prediction sets are shown in Table 4.
Similarly, the performance of ANN models was assessed by MSE, 
RMSEP, R2

cal, and R2
pre. The optimum models should have lower MSE 

and RMSEP  values, as well as higher R2
cal and R

2
pre values.[31,32] The 

ANN models of five free anthraquinones are listed in Table 6, and the 
optimized model is highlighted in bold.
The major factors of the ANN model are different from the PLS model, 
including the spectral preprocessing method, the number of hidden 
neuron, transfer function, and processing elements (step size, momentum 
and iterations). The most common spectral pretreatment methods of the 
ANN model were OE, MMN and SNV. Even using the same test method 
during the development of the ANN model, the intensity of spectra may 
vary depending on the amount of samples used. With preprocessing, the 

spectra can be compared more accurately. The optimal preprocessing 
methods for aloe‑emodin, emodin, rhein, physcion, and chrysophanol 
were SNV, MMN, SNV, SNV, and SNV, respectively. Moreover, in 
order to extract effective information and improve the running speed 
of ANN model, 200 wavelength points were extracted from the basis 
of the peak valley. The selecting wavelength points were concentrated 
in the wavelength range of 7000‑4000cm‑1 which contained abundant 
information.
Another parameter to be optimized in the ANN model is the number of 
nodes in the hidden layer. In principle, the number of hidden neurons 
determines the complexity of the network. If the number of hidden units 
is insufficient, prediction errors tend to be elevated due to poor model 
fitting. However, too many hidden units can cause overfitting, increasing 
prediction errors. The method to determine the optimum number of 
hidden neuron is to start with a minimum number and continually add 
one new unit.[33] The results showed that the optimum number of hidden 
neurons for aloe‑emodin, emodin, rhein, physcion, and chrysophanol 
was 8, 12, 12, 10, and 9, respectively.
The transfer functions most widely used in hidden layers are the sigmoid 
Axon or tanh Axon, which enable many nonlinearities to be fitted. The 
transfer functions of five free anthraquinones were all tanh Axon.
In this study, multilayer perceptrons, the most common network 
topology, was applied; these are layered feed forward networks typically 
trained with static backpropagation. Their main advantages are that they 
are easy to use and can be implemented efficiently with computers. Back 
propagation is slow to converge but can be improved by selecting the 
appropriate processing elements. For example, a larger step size allows 
the minimum to be reached more rapidly. However, if the step size is 
too large, the algorithm will diverge and the error will increase instead 
of decreasing. If the step size is too small, it will take too long to reach 
the minimum, which also increases the probability of getting caught 
in local minima. The optimum processing elements of the five free 
anthraquinones are shown in Table 6.
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Result of near infrared reflectance models
The performance of PLS and Ann model was evaluated by the samples 
in prediction set. By comparing the values of RMSEP and R2

pre, the 
relatively best‑fitted calibration model of five free anthraquinones 
was finally obtained [Table 7]. The results of the T‑test indicated no 
significant difference in the values of RMSEP and R2

pre between the 
two types of calibration model. However, for aloe‑emodin, rhein, 
emodin, chrysophanol, and physcion, both RMSEP and R2

pre in 
the PLS models were superior to those in the ANN models, so PLS 
succeeded in developing optimum models with better fitting and 
prediction for the five free anthraquinones. Most of the R2

pre in the 
PLS model were over 0.95, while the values of R2

pre in the ANN model 
were less than 0.95. Figure 4 shows the results of the prediction set for 
the optimal PLS and ANN models. It is clearly that the PLS models 
have better prediction accuracy than the ANN models, especially for 
chrysophanol.

CONCLUSION 
This study demonstrated that NIR spectroscopy together with PLS 
or ANN could be applied to determine the five free anthraquinones 
contents in rhubarb. The PLS and ANN calibration models of five free 
anthraquinones both had low RMSEP and high R2

pre indicated that 
the 2 types of models were accurate, robust, and repeatable for rapid 
determination. For which this real‑time measurement will significantly 
improve the efficiency of quality control and assurance of herbal 
medicine production. Compared to HPLC and LC‑MS, this technique 
does not require tedious sample preparation, time‑consuming sample 
analysis, or large amounts of solvent. It indicates that NIR is an ideal PAT 
tool that may be applied in the TCM industrial manufacturing process. 

Furthermore, as an analysis method that does not destroy samples, NIR 
is an indispensable means for sample quantification.
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