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ABSTRACT
Background: To date, efforts for the prevention and treatment of human 
respiratory syncytial virus  (RSV) infection have been still vain, and there 
is no safe and effective clinical accepted vaccine. Arisaema genus has 
claimed for various traditional bioactivities, but scientific assessments 
are quite limited. Objective: This encouraged us to carry out our present 
study on around 60 phytoconstituents of different Arisaema species as a 
natural inhibitor against the human RSV. Materials and Methods: Selected 
60 phytochemical entities were evaluated on the docking behavior of 
human RSV receptor  (PDB: 4UCC) using Maestro 9.3 (Schrödinger, LLC, 
Cambridge, USA). Furthermore, kinetic properties and toxicity nature 
of top graded ligands were analyzed through QikProp and ProTox tools. 
Results: Notably, rutin (glide score: −8.49), schaftoside (glide score: −8.18) 
and apigenin‑6,8‑di‑C‑β‑D‑galactoside (glide score − 7.29) have resulted in 
hopeful natural lead hits with an ideal range of kinetic descriptors values. 
ProTox tool  (oral rodent toxicity) has resulted in likely toxicity targets of 
apex‑graded tested ligands. Conclusion: Finally, the whole efforts can be 
explored further as a model to confirm its anti‑human RSV potential with 
wet laboratory experiments.
Key words: Apigenin‑6,8‑di‑C‑β‑D‑galactoside, Arisaema, ProTox, Rutin, 
Schaftoside

SUMMARY
•  Rutin, schaftoside, and apigenin‑6,8‑di‑C‑β‑D‑galactoside showed promising 

top hits docking profile against human respiratory syncytial virus
•  Moreover, absorption, distribution, metabolism, excretion properties (QikProp) 

of top hits resulted within an ideal range of kinetic descriptors
•  ProTox tool highlighted toxicity class ranges, LD50 values, and possible toxicity 

targets of apex‑graded tested ligands.

Abbreviations used: RSV: Respiratory syncytial virus, PRRSV: Porcine 
respiratory and reproductive syndrome virus, ADME‑T: Absorption, 
distribution, metabolism, excretion, and 
toxicity.

Correspondence:

Dr. Manik Ghosh, 
Department of Pharmaceutical Sciences and 
Technology, Birla Institute of Technology, Mesra, 
Ranchi ‑ 835 215, Jharkhand, India. 
E‑mail: manik@bitmesra.ac.in
DOI: 10.4103/pm.pm_459_16

ORIGINAL ARTICLE

INTRODUCTION
Human respiratory syncytial virus (RSV) represents as an important 
respiratory pathogens predecessor for the development of lower 
respiratory tract infections such as bronchiolitis and pneumonia in 
infants and young children worldwide. It causes diseases with an 
expected of 125,000 hospitalizations and 66,000–199,000 mortality 
rate in 2005 among children  >5  years of age. To date, attempts 
for the prevention and treatment of RSV infection have been still 
unsuccessful and there is no safe and effective clinical accepted 
vaccine. Notably, ribavirin showed promising licensed antiviral 
treatment, and moreover, passive immunization with palivizumab 
has too resulted in 50% protection to high‑risk children but due 
to questionable efficacy and toxicity put a big question mark 
among researchers.[1,2] Thus, there is an urgent need to explore 
and unlock safe effective therapy for RSV. RSV is an enveloped 
and nonsegmented with negative‑strand RNA virus  (family; 
Paramyxoviridae) belonging to the genus Pneumovirus. Previous 

studies have indicated that RNA‑dependent polymerase complex 
offers promising targets for RSV‑specific drugs. Remarkably, the 
ribonucleoprotein complex involves of genomic RNA encapsulated 
by the RSV nucleoprotein, N. This detection proceeds through 
interaction between the phosphoprotein P, which is the chief 
polymerase cofactor, and N.[3] Thus, we have tried to explore 
natural chemical entities with the nucleocapsid/phosphoprotein 
pocket site as an alternative to synthetic drugs to reduce or 
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minimize the side effects. A  series of phytochemical entities are 
accumulated as secondary metabolites during biosynthesis. The 
literature findings have already documented that the nature of these 
chemical substances varies due to the unique form of biosynthetic 
processes with the particular period of the plants and may worth for 
exceptional antiviral action.[4,5]

Arisaema genus consists of monocotyledon plant species belonging 
to family Araceae. Around 150 species are accessible throughout the 
world, out of which 140 species are found in Asia, Africa, and Arab 
continents.[6] Previous study has revealed that Arisaema franchetianum 
confirmed hopeful biological spectrum against porcine respiratory and 
reproductive syndrome virus.[7] Very few species of Arisaema genus 
have been documented for their biological actions to date.[8‑12] Thus, 
herein, an attempt was designed to computationally discover the in silico 
natural lead hits concerning their kinetic and toxicity nature against 
RSV [Figure 1].

MATERIALS AND METHODS
Molecular docking simulations were operated on Maestro 9.3 
(Schrödinger, LLC, Cambridge, USA) furnished with Core i5 processor, 
8 GB RAM, and 500 GB with Window 10 as the operating system. The 
tested ligands details were retrieved from various search engines such as 
SciFinder, PubMed, and Google Scholar.[7,13‑29]

Target protein identification and preparation
The three‑dimensional crystal structure of target RSV receptor 
(PDB: 4UCC) with a resolution of 2.05 Å was obtained from the 
Research Collaboratory for Structural Bioinformatics, PDB database 
(Anonymous, www.rcsb.org). The protein was linked in complex with 
1‑[(2,4‑dichlorophenyl) methyl] pyrazole‑3,5‑dicarboxylic acid as a 
reference ligand. Target receptor preparation was started in the course of 
protein preprocess step which agrees with the insertion of polar hydrogen 
and amputation of metal ions, cofactor, and water molecule outside 
5 Å. In addition, ionization  (pH: 6.7–7.3), optimization of hydrogen 
bond, and restorative energy minimization steps were also performed 
to attained the proper geometry of the receptor. The probable binding 
pocket area was indicated through grid box formation by clicking on the 
internal ligand.

Ligand preparation
The tested ligands were sketched in ChemDraw Ultra 
10.0  (CambridgeSoft) in.mol file format, followed by exportation 
into Maestro software. Outstandingly, ligands preparations were 
done using least square OPLS_2005 force field plus conformer 
generations and filtration to their energy minima with probable state 
creation (pH 7 ± 2.0).

Docking simulation
Extra Precision  (XP) Glide docking simulations were applied to the 

Table 1: Absorption, distribution, metabolism, excretion descriptors of top ranked entities from QikProp

Entities MW DM SASA FOSA PISA IP (EV) QPLOGPO/W QPLOGS QPLOGKHSA QPLOGKP RULE of 5
Rutin (20) 610.524 3.238 804.232 208.548 193.218 9.066 −2.470 −2.304 −1.360 −6.816 3
Schaftoside (1) 564.499 10.456 764.960 206.985 169.730 8.757 −2.329 −2.801 −1.128 −7.021 3
Apigenin‑6,8‑di‑C‑β‑D‑galactoside (7) 578.526 5.539 849.974 200.056 191.360 9.023 −2.665 −3.340 −1.262 −8.138 3

MW: Molecular weight; DM: Predicted dipole moment; SASA: Solvent assessable surface area; QPLOGPO/W: Predicted octanol/water partition coefficient; QPLOGS: 
Predicted aqueous solubility; QPLOGKP: Predicted skin permeability; QPLOGKHSA: Predicted human serum albumin binding; RULE of 5: Lipinski violations

indicated receptor grid of human RSV protein receptor. Finally, the 
results outcome was analyzed by the way of XP Visualizer not only in 
the form of glide score but also reviewing various probable interactions 
such as H‑bonding, π‑π interactions, and hydrophobic interactions, 
correspondingly.[30]

Absorption, distribution, metabolism, excretion, 
and toxicity prediction
Both of absorption, distribution, metabolism, excretion, and toxicity 
prediction (ADME‑T) were accomplished using QikProp (Maestro 9.3) 
and ProTox tools, respectively. Various kinetic descriptors as indicated 
in Table 1 were scrutinized. As for the ProTox analysis, oral toxicity in 
rodents (LD50 in mg/kg of body weight) descriptors with likely toxicity 
targets was too studied.[31]

RESULTS AND DISCUSSION
Overall, the results of tested chemical entities having particular glide 
score with human RSV receptors are summarized in Table 2. From the 
results, it has been observed that out of 60 phytoconstituents of Arisaema 
genus, rutin (glide score: −8.49), schaftoside  (glide score: −8.18), 
and apigenin‑6,8‑di‑C‑β‑D‑galactoside  (glide score  −7.29) attained 
top hits with an ideal range of kinetic descriptors values [Table  3].[32] 
Furthermore, toxicity profiles of tested chemical constituents (ProTox) 
were also highlighted with probable toxicity targets as mentioned in 
Table 4.

Top hits phytoconstituents
Rutin
This compound resulted as a first rank great hit with remarkably, 
H‑bonding interactions of Glu128, Glu112, Arg132, Asp152, and 
Arg150, followed by hydrophobic interactions of amino acid residues 
such as Phe111, Met50, Tyr135, leu139, respectively. Interestingly, π‑π 
stacking (Tyr135 and Hie151) were too seen.

Schaftoside
Schaftoside compound confirmed as the second best hit with H‑bonding 
interactions such as Glu144, Arg132, Glu112, Glu128, Lys110, Asp152, 
and Lys46. Moreover, π‑π stacking  (Arg150) was examined. The 
hydrophobic interactions  (Leu139, Tyr135, and Phe111) were also 
analyzed.

Apigenin‑6,8‑di‑C‑β‑D‑galactoside
Apigenin‑6,8‑di‑C‑β‑D‑glucopyranoside was observed as the 
third‑ranked promising hit with capable of H‑bonding (Arg132, 
Glu112, Glu128, Lys110, Asp152, and Lys46) and hydrophobic 
interactions  (Tyr135, Phe111). In addition, π‑π stacking (Arg150) was 
observed.
Among all top hits, rutin showed possible predicted interaction 
(LD50: 5000 mg/kg rodents) with adrenoceptor beta 2  (ADR β2) and 
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Figure 1: Contd...

Figure 1: Chemical structures of chief phytoconstituents reported from 
Arisaema species

prostaglandin G/H synthase 1 targets, which might be a valuable tool 
for future researchers to understand its precise mechanistic nature 
[Figure 2].
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Table 2: Phytoconstituents from Arisaema species docked with respiratory syncytial virus receptor

Plant species Phytoconstituents Docking score
Arisaema erubescens (Wall.) Schott 1. Schaftoside −8.18

2. Isoschaftoside −6.61
3. Aurantiamide acetate NS
4. Apigenin‑6‑C‑galactosyl‑8‑C‑arabinoside −6.14
5. Apigenin‑6‑C‑arabinosyl‑8‑C‑galactoside −6.99
6. Apigenin‑6,8‑di‑C‑β‑D‑glucopyranoside −6.91
7. Apigenin‑6,8‑di‑C‑β‑D‑galactoside −7.29
8. Paeonol −3.79
9. β‑sitosterol −1.99

Arisaema amurense Maxim 10. D‑mannitol −6.20
11. Daucosterol NS
12. 2,3‑dihydroxypropyl 9Z,12Z‑octadeca‑Dienoate −6.57

Arisaema tortuosum (Wall.) Schott 13. Stigmasterol NS
14. Campesterol −1.48
15. Cholesterol NS
16. Choline chloride −2.12
17. Stachydrine −2.41
18. Colchicine −3.19
19. Quercetin −5.44
20. Rutin −8.49
21. Luteolin −5.52

Arisaema triphyllum (L.) Schott 22. α‑ketoadipic acid NS
23. Inositol NS
24. Maleoyl acetic acid −3.72

Arisaema flavum (Forssk.) Schott 25. α‑amyrin −1.41
26. β‑amyrin −1.27
27. lup‑20 (29)‑en‑3β‑ol −1.60
28. lup‑20 (20)‑en‑3β‑yl acetate −1.63
29. (3β)‑Stigmast‑5‑en‑3‑yl β‑D‑galactopyranoside NS
30. Arisaeminone −3.61

Arisaema jacquemontii Blume 31. 2‑hydroxydiplopterol −2.60
32. 30‑nor‑lanost‑5‑ene‑3β‑ol NS
33. 30‑nor‑lanost‑5‑ene‑3‑one NS

Arisaema negishii Makino 34. Cis‑ribosylzeatin NS
Arisaema fargesii Buchet 35. Benzoic acid −3.08

36. Succinic acid −2.68
Arisaema franchetianum Engl 37. (2R*,3S*,5S*)‑N,2‑dimethyl‑3‑hydroxy‑5‑(10‑phenyldecyl) pyrrolidine NS

38. 3‑hydroxy‑1,1,2‑trimethyl‑5 (10‑phenyldecyl) 1‑H‑pyrrolium NS
39. Bergenin −4.80
40. Emodin −4.71
41. Caffeic acid −3.62
42. Nobiletin −3.02
43. Coniferin −4.78
44. Methyl Coniferin −5.28
45. 3‑O‑β‑d‑galactopyranosyl‑hederagenin 
28‑O‑β‑d‑xylopyranosyl (1→6)‑β‑D‑galactopyranosyl ester

NS

46. Qingyangshengenin NS
47. Syringaresinol 4’‑O‑β‑D‑glucopyranoside −6.97
48. Gagaminine −5.36
49. Perlolyrine NS
50. (S)‑1‑(1’‑hydroxyethyl)‑β‑carboline −4.03
51. 1‑(β‑carboline‑1‑yl)‑3,4,5‑trihydroxy‑1‑pentanone −5.38
52. 1‑methoxycarbonyl‑β‑carboline −3.54
53. Indolo[2,3‑β]carbazole −4.47
54. 4‑hydroxycinnamic acid methyl ester −3.94

Arisaema decipiens Schott 55. (‑)‑(2R*, 3S*, 6S*)‑N,2‑dimethyl‑3‑hydroxy‑6‑(9‑phenylnonyl) piperidine −3.78
56. Nimbin −3.39
57. 6‑deacetylnimbin −3.77
58. 28‑deoxonimbolide −3.16

Arisaema rhizomatum C.E.C. Fisch 59. 5,7,4/‑trihydroxy‑3/‑methoxyflavone −4.65
60. Cinnamic acid −4.25

Internal Ligand: 1‑[(2,4‑dichlorophenyl) methyl] pyrazole‑3,5‑dicarboxylic acid −5.95
NS: Not scored
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Figure 2: Binding interactions of rutin with human respiratory syncytial 
virus receptor

CONCLUSION
In the present study, glide scores of tested phytoconstituents of 
Arisaema genus were recorded from −1.41 to −8.49. Apex‑ranked hits 
such as rutin, schaftoside and apigenin‑6,8‑di‑C‑β‑D‑glucopyranos
ide have found to have superior interactions and binding affinity with 
human RSV. Computational ADME‑T studies were also emphasized 
to ensure the safety and effectiveness of drugs based on natural 
origin. Therefore, these preliminary studies might be quite useful for 
future researchers to validate it with wet laboratory experiments.
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Table 3: Binding affinity of top three hits of Arisaema species with human respiratory syncytial virus receptor

Chemical entities Glide score Number of H-bonds H-bond distance (Å) Amino acid allied
Rutin (20) −8.49 7 2.00

1.98
1.90
2.00
2.04
2.03
1.96

Glu128
Glu112
Arg132
Asp152
Arg150

Schaftoside (1) −8.18 10 2.42
1.80
1.86
1.85
2.41
1.70
1.76
2.04
1.93
1.96

Glu144
Arg132
Glu112
Glu128
Lys110
Asp152
Lys46

Apigenin‑6,8‑di‑C‑β‑D‑galactoside (7) −7.29 9 2.08
2.03
2.12
2.41
1.82
3.03
1.89
1.77
2.02

Arg132
Glu112
Glu128
Lys110
Asp152
Lys46

1‑[(2,4‑dichlorophenyl) methyl] pyrazole‑3,5‑dicarboxylic acid 
(Internal Ligand)

−5.95 3 1.67
1.84
2.07

Lys46
Hie151
Arg150
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Table 4: Toxicity profiles of top hits from ProTox database

Entities LD50 (mg/kg) Toxicity 
class*

Average similarity Predicted accuracy Possible toxicity targets (UniProt name)

Rutin (20) 5000 5 100 100 ADRβ2 and PGH1
Schaftoside (1) 536 4 57.26 67.38 No binding
Apigenin‑6,8‑di‑C‑β‑D‑galactoside (7) 536 4 56.98 67.38 No binding

*Toxicity class ‑ Class 1: Fatal if swallowed (LD50  ≤5 mg/kg); Class 2: Fatal if swallowed (5< LD50 ≤300 mg/kg); Class 3: Toxic if swallowed (50< LD50 ≤300 mg/kg); 
Class 4: Harmful if swallowed (300< LD50 ≤2000 mg/kg); Class 5: May be harmful if swallowed (2000< LD50 ≤5000 mg/kg); Class 6: Nontoxic (LD50  >5000 mg/kg); 
ADRβ2: Adrenoceptor beta 2; PGH1: Prostaglandin G/H synthase 1


