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ABSTRACT
Background: Herbal medicine is widely used all over the world for treating 
various health disorders. It is employed either alone or in combination with 
synthetic drugs or plants to be more effective. Objective: The assessment 
of the effect of both water and methanol extracts of 57 widely used 
plants from Traditional Chinese Medicine (TCM) against the main phase 
I metabolizing enzyme CYP3A4 in vitro for the first time. Materials and 
Methods: The inhibition of cytochrome P450 activity was evaluated using 
a luminescence assay. The principal component analysis (PCA) was used 
to correlate the inhibitory activity with the main secondary metabolites 
present in the plant extracts. Molecular modeling studies on CYP3A4 (PDB 
ID 4NY4) were carried out with 38 major compounds present in the most 
active plant extracts to validate the observed inhibitory effect. Results: 
Aqueous extracts of Acacia catechu, Andrographis paniculata, Arctium 
lappa, Areca catechu, Bupleurum marginatum, Chrysanthemum indicum, 
Dysosma versipellis, and Spatholobus suberectus inhibited CYP3A4 is 
more than 85% (at a dose of 100 μg/mL). The corresponding methanol 
extracts of A. catechu, A. paniculata, A. catechu, Mahonia bealei, and 
Sanguisorba officinalis inhibited the enzyme by more than 50%. Molecular 
modeling studies revealed that two polyphenols, namely hesperidin and 
rutin, revealed the highest fitting scores in the active sites of the CYP3A4 
with binding energies equal to -74.09 and -71.34 kcal/mol, respectively. 
Conclusion: These results provide evidence that many TCM plants can 
inhibit CYP3A4, which might cause a potential interference with the 
metabolism of other concomitantly administered herbs or drugs.

Key words: Cytochrome P450, herbal–drug interaction, principal 
component analysis (PCA), Traditional Chinese Medicine (TCM), virtual 
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SUMMARY
• In this study, the inhibitory activity of the aqueous and methanol extracts of 

57 widely used plants from Traditional Chinese Medicine (TCM) against the 
main phase I metabolizing enzyme CYP3A4 was tested in vitro for the first 
time.

• Aqueous extracts of Acacia catechu, Andrographis paniculata, Arctium lappa, 
Areca catechu, Bupleurum marginatum, Dysosma versipellis, and Spatholobus 

suberectus inhibited CYP3A4 by more than 85% (at a dose of 100 μg/mL).
• The activity could be attributed to the presence of polyphenolics as revealed 

from the multivariate chemometric analysis and molecular modeling study.
• These results provide evidence that many TCM plants can inhibit CYP3A4, 

which might cause a potential interference with the metabolism of other 
concomitantly administered herbs or drugs.
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INTRODUCTION
Phytomedicine is increasingly receiving attention from both the 
public and healthcare professionals.[1] However, possible interaction(s) 
between herbal preparations and other concomitantly administered 
synthetic medications may cause very serious medical problems.[2-5] 
Pharmacokinetic interactions between medicinally active plants and 
other synthetic drugs may cause a change in liberation, absorption, 
distribution, metabolism, excretion, or toxicity of a respective drug. 
Apart from that, plant extracts may cause many pharmacodynamic 
interactions with the receptors and enzymes leading to enhanced or 
attenuated pharmacological action of therapeutics, which might cause 
unwanted effects.[6,7] Therefore, understanding the ability of medicinal 
plants to modulate the metabolizing enzymes is really crucial for a 
responsible treatment of patients.[8]

The cytochrome P450 (CYP) enzymes are the main players in Phase I 
metabolism and also involved in the oxidation and elimination of a wide 
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array of xenobiotics (such as drugs and toxins). Drug metabolism involves 
around 15 different CYP isoforms in which CYP 1A2, 2C9, 2C19, 2D6, 2E1, 
and 3A4 are the most abundant.[9] CYP3A4 acts on lipophilic substrates 
and metabolizes about 50% of the drugs in the liver[10] whereas CYP2D6 
exhibits a preference for positively charged molecules, usually containing 
a basic nitrogen. On the other hand, CYP2C9 metabolizes weakly anionic 
molecules, while CYP1A2 acts on polyaromatic hydrocarbons, and 
CYP2E1 metabolizes small relatively soluble organic compounds.[11]

CYP3A4 is the most abundant isoform of the human CYP system 
accounting for approximately 28% of the whole enzyme system.[12,13] 
The CYP3A4 enzyme usually introduces a hydroxyl or epoxy group to 
many lipophilic substrates. Then, the hydroxylated xenobiotics become 
conjugated with glucuronic acid, sulfate, or amino acids. In turn, they 
become eliminated via the kidney and urine.[14]

A number of therapeutic agents, including natural products, are the main 
substrates of CYP3A4. Among them, quinidine, vinblastine, ergotamine, 
berberine, and colchicine are the most known[15] while nifedipine and 
diazepam figure as common synthetic substrates.[16] Furthermore, 
CYP3A4 activity can be inhibited by many plant extracts.[17,18] Grapefruit 
with the furanocoumarin derivatives and flavonoids[19] and kava-kava 
with its kavalactones[20] are prominent examples for herbal drugs that 
can cause clinically important modulation in CYP3A4 activity. On the 
other hand, prolonged use of Hypericum extracts, containing hypericin, 
results in an induction of the enzyme activity.[21-23]

Because the plants used in Traditional Chinese Medicine (TCM) are 
diverse, our knowledge about the interactions between these herbal 
drugs and the CYP system is rather limited.[1,24] Therefore, in this 
communication, we investigated the potential inhibition of CYP3A4 by 
57 widely used TCM plants to explore the relevance of this activity with 
regard to adverse effects. Moreover, statistical analysis using principal 
component analysis (PCA) was applied to correlate the inhibitory activity 
with the main compounds present in the plant extracts. Additionally, 
molecular docking was carried out with 38 major secondary metabolites 
found in the bioactive plant extracts to validate the inhibition results.

MATERIALS AND METHODS
Plant materials
TCM plants were purchased from Chinese markets. Their identity was 
ascertained in our laboratory through DNA barcoding technique.[25] 
Voucher specimens are stored at the Department of Biology, Institute 
of Pharmacy and Molecular Biotechnology, Heidelberg University under 
the accession numbers P6835-P6919.

Preparation of the plant extracts
One hundred gram of dried plants were grounded to a fine powder. Plant 
powders were refluxed with 1 L of either methanol or deionized, distilled 
water (analytical grade) for 4 h. The methanol (MeOH) extracts were 
dried over anhydrous Na2SO4 and evaporated till dryness under vacuum 
at 45°C, whereas the water (H2O) extracts were evaporated directly under 
the same conditions until dryness. Then, they were lyophilized overnight 
to ensure optimum dryness. The extracts are kept in tight sealed vials at 
-20°C away from light until use.

CYP3A4 activity
The CYP3A4 assay kit (P450-GloTM, Promega®, Mannheim, Germany) 
was used to determine the potential inhibition of recombinant human 
CYP3A4 enzyme by different plant extracts according to the manufacturer 
protocol.[26] Briefly, the samples were prepared using dimethyl sulfoxide 
(DMSO) to give final concentrations of 100, 200, and 500, or 1000 µg/mL  
where DMSO did not exceed 1% of the solutions. Equal volumes (12.5 

µL) of each tested sample and the reaction mixture containing 5 mM 
luciferin-6’-benzyl ether (CYP3A4 specific substrate) in 100 mM 
phosphate buffer (pH 7.4) and the enzyme (1 pmol/µL) were incubated at 
25°C for 10 min. Then, 25 µL of NADPH regeneration system containing 
26 mM NADP+, 66 mM glucose-6-phosphate, 66 mM MgCl2, and 40 
U/mL glucose-6-phosphate dehydrogenase in 5 mM citrate buffer  
(pH 5.5) in 1 M phosphate buffer was added and left for 30 min to 
activate the enzyme. A luciferin detecting reagent (50 µL) was added to 
stop the CYP3A4 enzyme activity. The luminescence was detected after 
20 min using a TecanTM SafireII Reader (TecanTM, Crailsheim, Germany). 
The effects of different extracts were evaluated in triplicate relative to 
blank control containing 1% DMSO. Ketoconazole (10 µM) was used as 
a positive control.

Molecular modeling studies
In silico molecular modeling of the major compounds present in the 
bioactive extracts was carried out using Discovery Studio 2.5 (Accelrys® 
Inc., San Diego, CA, USA) using C-Docker protocol applying both 
pH-based as well as rule based ionization methods to simulate the 
physiological conditions and to evaluate the influence of ionization of 
various ionizable groups on the behavioral interaction of the secondary 
metabolites at the active site of the enzyme. The x-ray crystal structure 
of CYP3A4 (PDB ID 4NY4, 2.95 Å) co-crystalized with its lead 
compound (L), (8R)-3,3-difluoro-8-[4-fluoro-3-(pyridine-3-yl)phenyl]-
8-(4-methoxy-3-methylphenyl)-2,3,4,8-tetrahydroimidazo[1,5-a]
pyrimidine- 6-amine), was obtained from the protein data bank (www.
pdb.org). The standard protein preparation protocol was applied to 
construct the structure of the enzymes. This was briefly done by the 
addition of hydrogen atoms to the enzyme and cleansing of all undesirable 
interactions. Then, the binding site was determined by detection of the 
binding mode of bioactive conformation of the lead compound (L) with 
CYP3A4.[27] The structures of the selected compounds were docked 
inside the binding site after applying CHARMm as the force field and 
the binding energies and modes for the selected docking poses were 
determined as described before.[28]

Statistical analysis
Data were presented as means ± mean standard deviation. One-way 
analysis of variance (ANOVA) with Tukey’s post hoc test was used to 
identify statistically significant (P < 0.05) differences between the groups. 
Analyses were performed with Prism 5.0 software (Graph Pad®, San 
Diego, USA). Chemometric analysis of the data was performed using 
unsupervised pattern recognition techniques applying PCA, where a 
matrix of the total number of samples (57 samples) multiplied by the 
different tested doses for both water and alcoholic extracts (six variables) 
was constructed. PCA was performed by Unscrambler® 9.7 (CAMO, AS, 
Norway).

RESULTS
All TCM extracts inhibited CYP3A4 activity to some degree [Table 1]. 
Generally, the H2O extracts were more potent than the MeOH extracts, 
and their corresponding activities were positively correlated as shown in 
Figure 1 a-c. Therefore, multivariate analysis was applied to statistically 
evaluate the significance of inhibition of the CYP enzyme. Moreover, 
clustering the plants samples based on their activity and their chemical 
profiling was established. The PCA score plot [Figure 2] resulted in 
two orthogonal PCs, which explained about 89% of the variance in 
180-dimensional space using only the first two components (the first 
PC accounts for 65% of the total variance followed by the second PC 
with 24%). PCA score plot classified the samples into five main clusters 
according to their similarity of cytochrome P450 inhibition utilizing 
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Table 1: Inhibition of CYP3A4 activity by aqueous and alcoholic extracts from 57 TCM plants

Scientific name (Family)* H2O extract MeOH extract

1000 µg/ml 200 µg/ml 100 µg/ml 500 µg/ml 200 µg/ml 100 µg/ml
Abrus cantoniensis (Fabaceae) (AC1) 90.70 ± 8.38 61.35 ± 5.47 22.40 ± 2.65 83.55 ± 3.05 35.02 ± 3.19   19.29 ± 2.78
Acacia catechu (Fabaceae) (AC2) 100.19 ± 10.31 99.25 ± 8.02 96.01 ± 5.92 93.14 ± 7.41 71.55 ± 4.27 62.34 ± 3.40
Alpinia galanga (Zingiberaceae) (AG) 84.21± 4.78 57.34 ± 3.97 24.92 ± 4.19 35.96 ± 5.92 31.37 ± 2.08 17.65 ± 2.56
Andrographis paniculata (Acanthaceae) (AP) 100.10 ± 8.18 92.43 ± 6.40 87.57 ± 3.62 89.83 ± 7.53 69.03 ± 4.02 52.53 ± 2.18
Arctium lappa (Asteraceae) (AL) 99.14 ± 5.21 96.48 ± 5.69 93.47 ± 5.93 85.32 ± 7.73 48.46 ± 3.53 47.92 ± 3.66
Areca catechu (Arecaceae) (AC3) 100.68 ± 9.53 99.74 ± 5.75 98.94 ± 6.24 92.88 ± 6.91 71.48 ± 5.99 56.94 ± 4.35
Artemisia annua (Asteraceae) (AA) 100.44 ± 11.66 96.11 ± 7.31 83.96 ± 4.62 76.99 ± 5.52 35.30 ± 4.12 31.01 ± 3.98
Artemisia capillaris (Asteraceae) (AC4) 99.42 ± 9.70 89.94 ± 8.37 82.36 ± 5.40 86.21 ± 8.94 58.07 ± 3.29 33.95 ± 2.27
Belamcanda chinensis (Iridaceae) (BC) 99.58 ± 9.82 90.76 ± 1.42 85.90 ± 2.05 71.96 ± 4.87 61.07 ± 4.75 42.99 ± 2.55
Bupleurum marginatum (Apiaceae) (BM) 100.36 ± 8.26 98.85 ± 5.85 96.98 ± 3.14 85.37 ± 5.30 73.84 ± 4.01 47.21 ± 3.15
Capsella bursa-pastoris (Brassicaceae) (CB) 98.59 ± 4.24 67.70 ± 4.00 17.13 ± 4.64 85.14 ± 8.83 20.03 ± 3.91 7.35 ± 3.22
Cassia tora (Fabaceae) (CT1) 94.95 ± 7.17 74.52 ± 5.75 58.72 ± 3.70 25.58 ± 3.29 25.81 ± 4.08 16.38 ± 3.08
Celosia cristata (Amaranthaceae) (CC) 47.13 ± 6.42 44.44 ± 6.80 37.38 ± 3.99 25.42 ± 5.26 2.75 ± 1.48 1.79 ± 1.02
Centella asiatica (Apiaceae) (CA) 98.74 ± 8.38 80.92 ± 6.62 64.16 ± 2.40 80.39 ± 5.45 45.74 ± 2.03 22.89 ± 3.22
Centipeda minima (Asteraceae) (CM1) 100.83 ± 6.24 83.40 ± 5.83 75.33 ± 5.71 51.61 ± 4.71 23.46 ± 4.16 12.14 ± 3.05
Chrysanthemum indicum (Asteraceae) (CI) 99.07 ± 9.45 91.34 ± 3.93 89.88 ± 3.91 76.85 ± 4.94 57.49 ± 5.28 46.18 ± 4.99
Chrysanthemum morifolium (Asteraceae) (CM2) 99.65 ± 10.23 87.67 ± 5.56 79.67 ± 5.06 79.25 ± 6.11 58.16 ± 5.45 41.00 ± 4.26
Cnidium monnieri (Apiaceae) (CM3) 99.96 ± 8.12 81.95 ± 8.24 59.79 ± 3.51 83.23 ± 5.96 23.53 ± 3.11 1.51 ± 1.46
Croton tiglium (Euphorbiaceae) (CT2) 99.03 ± 10.88 86.25 ± 7.62 71.14 ± 4.64 36.58 ± 4.70 19.14 ± 3.06 16.86 ± 3.14
Cymbopogon distans (Poaceae) (CD) 94.43 ± 7.56 69.19 ± 6.20 14.72 ± 2.21 13.01 ± 3.78 4.27 ± 2.10 2.71 ± 1.53
Cynanchum paniculatum (Asclepidaceae) (CP) 86.27 ± 8.58 47.55 ± 4.64 27.95 ± 3.90 34.37 ± 4.59 28.70 ± 3.19 22.62 ± 3.62
Cyrtomium fortune (Dryopteridaceae) (CF) 98.81 ± 7.26 97.15 ± 5.42 74.91 ± 3.39 70.31 ± 6.65 27.72 ± 3.73 15.47 ± 4.11
Dendrobium loddigesii (Orchidaceae) (DL) 97.02 ± 4.68 71.48 ± 5.59 64.47 ± 1.40 32.05 ± 4.91 10.39 ± 2.67 4.44 ± 2.37
Desmodium styracifolium (Fabaceae) (DS) 69.16 ± 6.46 42.27 ± 3.37 11.16 ± 2.78 54.70 ± 3.89 20.04 ± 4.61 10.22 ± 3.12
Dysosma versipellis (Berberidaceae) (DV) 98.11 ± 5.85 95.49 ± 7.61 93.49 ± 4.60 19.92 ± 4.77 13.04 ± 2.82 5.97 ± 2.88
Eclipta prostata (Asteraceae) (EP) 96.93 ± 5.01 70.07 ± 7.86 54.43 ± 3.51 40.96 ± 5.61 18.89 ± 2.69 14.49 ± 2.02
Eleutherococcus senticosus (Araliaceae) (ES) 91.61 ± 7.71 72.71 ± 5.68 51.73 ± 2.30 62.99 ± 7.29 34.77 ± 3.90 29.03 ± 4.51
Equisetum hiemale (Equisetaceae) (EH) 73.77 ± 8.74 16.75 ± 6.85 21.99 ± 3.11 65.56 ± 6.31 30.23 ± 3.27 20.49 ± 3.09
Evodia lepta (Rutaceae) (EL) 91.49 ± 4.34 50.15 ± 6.45 31.27 ± 2.48 70.33 ± 6.25 52.48 ± 3.32 42.95 ± 3.82
Evodia rutaecarpa (Rutaceae) (ER) 87.83 ± 5.18 56.70 ± 5.88 14.27 ± 3.07 63.82 ± 5.28 40.18 ± 5.76 32.85 ± 4.25
Hedyotis diffusa (Rubiaceae) (HD) 91.29 ± 3.45 69.61 ± 6.06 29.66 ± 2.88 46.04 ± 5.39 36.80 ± 4.08 15.56 ± 3.13
Harpagophytum procumbens (Pedaliaceae) (HP) 80.58 ± 7.31 28.37 ± 8.50 9.29 ± 2.34 23.83 ± 4.41 21.56 ± 3.22 25.49 ± 3.91
Houttuynia cordata (Saururaceae) (HC) 60.29 ± 4.80 24.79 ± 4.85 15.76 ± 3.94 61.79 ± 4.35 28.07 ± 4.58 24.26 ± 3.69
Isatis indigotica (Brassicaceae) (II) 58.38 ± 8.56 30.02 ± 6.40 23.96 ± 4.41 60.93 ± 3.51 29.35 ± 2.01 19.99 ± 3.21
Kadsura longipedunculata (Schisandraceae) (KL) 96.56 ± 7.88 69.51 ± 6.91 49.55 ± 3.16 82.12 ± 6.09 59.23 ± 4.21 48.30 ± 4.70
Lonicera confusa (Caprifoliaceae) (LC) 95.77 ± 9.12 79.62 ± 9.86 60.91 ± 7.46 37.31 ± 3.34 17.98 ± 1.09 0.44 ± 0.27
Magnolia officinalis (Magnoliaceae) (MO) 88.79 ± 7.45 74.96 ± 6.43 58.68 ± 5.96 50.51 ± 3.88 29.25 ± 3.15 14.85 ± 0.62
Mahonia bealei (Berberidaceae) (MB) 69.56 ± 12.05 50.33 ± 4.22 35.54 ± 4.31 90.04 ± 8.24 72.43 ± 5.32 56.72 ± 4.93
Mentha haplocalyx (Lamiaceae) (MH) 96.56 ± 2.88 76.20 ± 6.26 52.15 ± 4.91 38.13 ± 3.93 17.27 ± 1.12 1.19 ± 0.37
Ophioglossum vulgatum (Ophioglossaceae) (OV) 96.71 ± 6.15 60.72 ± 7.62 60.86 ± 5.09 82.64 ± 3.09 37.85 ± 2.23 24.91 ± 0.54
Panax notoginseng (Araliaceae) (PN) 94.37 ± 2.37 67.68 ± 2.19 44.91 ± 5.41 37.71 ± 4.06 35.97 ± 3.20 29.83 ± 3.86
Paris polyphylla (Melanthiaceae) (PP) 70.76 ± 5.63 19.45 ± 4.37 4.08 ± 2.19 42.72 ± 2.55 14.41 ± 3.11 2.92 ± 1.18
Patrinia scabiosaefolia (Valerianaceae) (PS) 99.77 ± 4.01 69.41 ± 3.22 37.78 ± 3.69 10.78 ± 4.19 0.36 ± 0.65 0.61 ± 0.04
Polygonum cuspidatum (Polygonaceae) (PC) 95.94 ± 5.28 85.73 ± 4.08 74.20 ± 8.05 85.61 ± 6.04 62.24 ± 2.78 39.81 ± 4.68
Polygonum multiflorum (Polygonaceae) (PM) 94.22 ± 7.66 79.15 ± 5.98 40.41 ± 2.49 80.72 ± 5.07 33.25 ± 1.21 18.02 ± 3.41
Punica granatum (Rosaceae) (PG) 97.91 ± 9.43 68.52 ± 3.42 33.48 ± 4.75 72.82 ± 2.36 29.88 ± 4.88 16.76 ± 2.18
Rosa laevigata (Rosaceae) (RL) 96.12 ± 7.48 82.05 ± 4.92 37.37 ± 3.53 40.90 ± 2.10 38.36 ± 7.29 21.52 ± 3.73
Sanguisorba officinalis (Rosaceae) (SO) 97.99 ± 11.76 91.30 ± 7.19 83.94 ± 7.95 89.67 ± 4.14 73.83 ± 3.18 59.96 ± 3.52
Saposhnikovia divaricata (Apiaceae) (SD) 86.58 ± 9.84 47.51 ± 3.84 13.69 ± 1.51 34.72 ± 5.02 17.89 ± 3.67 8.21 ± 3.14
Scutellaria baicalensis (Lamiaceae) (SB) 95.61 ± 8.58 84.42 ± 5.99 59.43 ± 3.90 54.01 ± 3.09 30.39 ± 4.92 20.55 ± 4.91
Selaginella tamariscina (Selaginellaceae) (ST) 86.92 ± 11.38 51.42 ± 2.60 36.23 ± 2.13 41.58 ± 5.06 28.29 ± 3.27 28.89 ± 1.93
Senecio scandens (Asteraceae) (SS1) 94.42 ± 9.60 77.90 ± 1.01 61.07 ± 4.98 56.31 ± 3.66 24.58 ± 4.63 15.80 ± 3.14
Siegesbeckia orientalis (Asteraceae) (SO) 64.03 ± 8.55 35.13 ± 4.62 22.79 ± 2.17 65.09 ± 2.31 30.37 ± 2.52 28.76 ± 4.82
Spatholobus suberectus (Fabaceae) (SS2) 97.29 ± 12.98 95.76 ± 4.46 91.50 ± 7.65 78.95 ± 6.09 50.55 ± 3.90 36.42 ± 2.13
Taxillus chinensis (Loranthaceae) (TC) 99.58 ± 10.64 79.40 ± 5.12 61.50 ± 5.69 64.60 ± 2.16 42.54 ± 4.04 47.41 ± 1.07
Verbena officinalis (Verbenaceae) (VO) 88.05 ± 9.19 26.46 ± 3.82 11.85 ± 2.10 39.13 ± 2.39 25.00 ± 1.24   9.54 ± 3.26
Viola yezoensis (Violaceae) (VY) 37.28 ± 7.18 21.92 ± 8.04   9.29 ± 4.67 71.90 ± 2.21 36.62 ± 1.38 24.97 ± 2.75

*The code assigned for each plant on the chemometric analysis. Data are presented as mean ± SD of three replicate.
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Table 2: Major secondary metabolites present in the plants producing an inhibition of the CYP 3A4 activity at 100 μg/mL higher than 50%

Name/Family Code/ Part 
used

Compounds Ref.

Acacia catechu (Fabaceae) P6836/Resin Monomeric and polymeric flavonoid derivatives: catechin, epicatechin, epicatechin gallate, 
procatechinic acid, quercetin and kaempferol. 

[38]

Andrographis paniculata
(Acanthaceae) 

P6838/ Herb Diterpenolactones: andrographolide, 14-deoxy-11-dehydroandrographolide, 14-deoxy-11-
oxoandrographolide, 5-hydroxy-7,8,2’,3’-tetramethoxyflavone, neoandrographolide, paniculide-A, 
paniculide-B and paniculide-C.

[39, 40]

Arctium lappa (Asteraceae) P6839/Seeds Lignans: Lappaol F, diarctigenin and arctigenin [41]

Areca catechu (Arecaceae) P6840/ Seeds Alkaloids: arecoline, arecaidine, arecolidine, guvacine, guvacoline, isoguvacine, norarecaidine and 
norarecoline.

[42]

Artemisia annua 
(Asteraceae)

P6841/ Herb Sesquiterpene lactone: Artemisinin, deoxyartemisinin, artemisinic acid, arteannuin-B, stigmasterol, 
friedelin, friedelan-3 beta-ol, artemetin, and quercetagetin 6,7,3’,4’-tetramethyl ether.

[43, 44]

Artemisia capillaris 
(Asteraceae)

P6842/ Herb Flavone: 5, 2’,4’-trihydroxy 6,7,5’-trimethoxyflavone.
Phenylalkynes:  capillaridins A-H, capillin, capillene and O-methoxycapillene, 6’-O-caffeoyl-p-
hydroxyacetophenone-4-O-β-D-glucopyranoside and 6-amino-9-[1-(3,4-dihydroxyphenyl) ethyl]-9H-
purine.
Coumarins: coumarin, scopoletin

[45, 46]

Belamcanda chinensis 
(Iridaceae)

P6843/Rhizome Phenolic compounds: Belalloside A, belalloside B, belamphenone, resveratrol, iriflophenone, 
irisflorentin, tectorigenin, irilin D, tectoridin, iristectorin A, iristectorin B, hispiduloside, androsin, 
irigenin, iridin, and jaceoside,

[47]

Bupleurum marginatum 
(Apiaceae)

P6845/ Herb Flavonoids and steroids: Rutin, isoquercetrin, isorhamnetin, quercetin, β-sitosterol, α-spinasterol, 
daucosterol, α-spinasterol glucoside. 

[34]

Cassia tora (Fabaceae) P6847/ Seeds Anthraquinones and anthraquinones derivatives: Chrysophanol, naphtho-α–pyrone-toralactune, 
physcion, rubrofusarin, chrysophonic acid -9 –anthrone, dianthrone glycosides (sennoside A, B).

[48, 49]

Centella asiatica (Apiaceae) P6849/ Herb Triterpenes: madecassic acid, brahmic acid and asiatic acid. 
Triterpenoid ether glycosides: madecassoside, asiaticoside, brahmoside and brahminoside.

[50]

Centipeda minima 
(Asteraceae)

P6850/ Herb Sesquiterpene lactones: 6-O-methylacrylylplenolin, 6-O-isobutyroylplenolin, and 
6-O-angeloylplenolin, senecioylplenolin, aurantiamide acetate, tetrahydrohelenalin.
Flavonoids: quercetin-3-methyl ether, quercetin-3,3’-dimethyl-ether, quercetin-3,7,3’-trimethyl-ether, 
quercetin-3,7,3’,4’-tetramethyl-ether and  α-cyperone.

[51]

Chrysanthemum indicum 
(Asteraceae)

P6851/ Flowers Flavonoids: (2S)-eriodictyol 7-O-β -D-glucopyranosiduronic acid,  (2R)-eriodictyol 7-O-β 
-D-glucopyranosiduronic acid, (2S,3S)-1-phenyl-2,3-butanediol 3-O-β-D-glucopyranoside, apigenin 
7-O-β -D-glucopyranoside, diosmetin 7-O- β -D-glucopyranoside, quercetin 3,7-di-O-β-D-
glucopyranoside,, luteolin 7-O- β -D-glucopyranoside, luteolin 7-O-β-D-glucopyranosiduronic acid, 
acacetin 7-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside  and eupatilin.

[52]

Chrysanthemum morifolium 
(Asteraceae)

P6852/ Flowers Triterpene alcohol: pentacyclic triterpene diols and triols: faradiol, heliantriol B, heliantriol 
C, 22-alpha-methoxyfaradiol, arnidiol, and faradiol alpha-epoxide, maniladiol, erythrodiol, 
longispinogenin, coflodiol, heliantriol A, brein and uvaol, calenduladiol and heliantriol B.
Phenolic compounds: luteolin-7- O-β-glucoside, quercitrin. chlorogenic acid, 3,5-O-caffeoylquinic 
acid, galuteolin, acacetin-7-O-β-d-glucopyranoside, acacetin-7-O-α-l-rhamopyranoside, eriodictyol, 
eriodictyol 7-O-glucuronide, arabinogalactan, vitexin-2-O-rhamnoside, quercetin-3-galactoside, 
luteolin-7-O-β- glucuronide, diosmetin, acacetin, and apigenin.
Sesquiterpenes: chrysanthediol A, chrysanthediacetate B and chrysanthediacetate C and 
β-dictyopterol, chrysandiol, chrysartemins A and B, and chlorochrymorin. 

[53, 54]

Cnidium monnieri 
(Apiaceae) 

P6854/ Seeds Bitter principles: imperatorin, xanthotoxin, isopimpinellin, bergapten, osthole, and daucosterol [55]

Croton tiglium 
(Euphorbiaceae)

P6856/ Seeds Phorbol esters of the tigliane type: 12-O-tetradecanoylphorbol-13-acetate, 13-O-acetylphorbol-20- 
linoleate, 13-O-tigloylphorbol-20-linoleate, 12-Oacetylphorbol-13-tigliate, 12-O-decanoylphorbol-13-
(2-methylbutyrate), 12-O-tigloylphorbol-13-(2-methylbutirate) and 12-O-acetylphorbol-13-decanoate, 
and 12-O-(2-methylbutiroyl)-phorbol-13-decanoate.

[56]

Cyrtomium fortune 
(Dryopteridaceae) 

P6859/ 
Rhizome 

Phenolic compounds: 6’-methylglucuronide-5-hydroxy-chromone, ethyl α-D-glactopyranoside, 
neoechinulin A, 9,12,13-trihydroxyoctadeca-10(E),15(Z)-dienoic acid and phellopterin.

[57]

Dendrobium loddigesii 
(Orchidaceae)

P6860/ Herb Alkaloids: dendrobine, nobiline, shihunidine, shihunine, moscatilin.
Phenolic compounds: Loddigesiinols G–J, crepidatuol B.

[58]

Dysosma versipellis 
(Berberidaceae) 

P6862/ 
Rhizome

Lignans: podophyllotoxin 
Flavonoids: quercetin, maohuoside B, epimedin A,

[59]

Eclipta prostrata 
(Asteraceae)

P6863/Herb Triterpenes, terthiophene, coumarins and isoflavone derivatives  5-Hydroxymethyl-(2,2’:5’,2’’)-
terthienyl tiglate, 5-hydroxymethyl-(2,2’:5’,2’’)-terthienyl agelate, 5-hydroxymethyl-(2,2’:5’,2’’)-
terthienyl acetate, ecliptal, orobol, wedelolactone, demethylwedelolactone, isodemethylwedelolactone, 
alpha-formylterthienyl, strychnolactone, β-sitosterol, nonacosanol, stearic acid, lacceroic acid, 
3,4-dihydoxy benzoic acid, eclalbasaponins II, I, III, XI and XII.

[60, 61]
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Eleutherococcus senticosus 
(Araliaceae)

P6919/Roots  Glycans: Eleutherans A, B, C, D, E, F, and G, eleutheroside C
Lignans and their glycosides: sesamine, eleutheroside D
Triterpene saponins: eleutheroside I, K, L, and M
Steroid glycosides: eleutheroside A
Hydroxycoumarins: isofraxidin
Phenylacrylic acid derivatives: eleutheroside B, E and E1.
Sinapaldehyde glucoside, coniferaldehyde glucoside, coniferin, 1,5-di-O-caffeoylquinic acid, 
3’,5’-O-dicaffeoylquinic acid, 4’,5’-O-dicaffeoylquinic acid eleutheroside E2, isomaltol 3-O-α- 
glucopyranoside.

[62]

Lonicera confusa 
(Caprifoliaceae)

P6880/ Wood Flavonoids: Rutin, quercetin, luteolin -7-O-β-D-galactoside, lonicerin, tricin, tricin-7-O-β-D-
glucopyranoside, chrysoeirol-7-O-neohesperidoside, and tricin-7-O-neohesperidoside.
β-sitosterol and tetratriacontane
Phenolic acids: Chlorogenic acid, 3,5-dicaffeoylquinic acid and caffeic acid.

[63]

Magnolia officinalis 
(Magnoliaceae) 

P6882/ Bark Tannins and flavonoids: gallic acid, sennosides A and B, hesperidin, naringin, rutin, syringin, 
magnolol and honokiol.

[64]

Mahonia bealei 
(Berberidaceae) 

P6883/ Wood Alkaloids: Berberine and other isoquinoline alkaloids [65]

Mentha haplocalyx 
(Lamiaceae) 

P6884/ Herb Miscellaneous compounds: Triterpene saponins, flavonoids, rutin, tannins, monoterpenes (menthol). 
benzoic acid, trans-cinnamic acid, β-sitosterol,  ursolic acid and daucosterol.

[66, 67]

Ophioglossum vulgatum 
(Ophioglossaceae)

P6885/ Herb Flavonoids: Quercetin-3-O-[(6-caffeoyl)-β-glucopyranosyl(1→3) α-rhamnopyranoside]-7-O-α-
rhamnopyranoside, kaempferol-3-O-[(6-caffeoyl)-β-glucopyranosyl (1→3)-α-rhamnopyranoside]-
7-O-α-rhamnopyranoside, quercetin-3-O-methyl ether, 3-O-methylquercetin-7-O-diglycoside 
4’-O-glycoside and ophioglonin

[68]

Polygonum cuspidatum 
(Polygonaceae)

P6894/ 
Rhizome

Anthraquinones: piceid, anthraglycoside A, anthraglycoside B, emodin, physcion, rhein, and 
chrysophanol.
Stilbenes: resveratrol and polydatin.

[69, 70]

Sanguisorba officinalis 
(Rosaceae) 

P6901/ 
Rhizome

Hydrolysable and condensed tannins mostly derivatives of gallic and ellagic acids: methyl 4-O-β-
D-glucopyranosy-5-hydroxy-3-methoxylbenzoate, 3,3’,4’-tri-O-methylellagic acid, fisetinidol-(4α-8)-
catechin, and (+)-catechin.
Flavonoids: rutoside, quercetin and kaempferol. 

[71]

Scutellaria baicalensis 
(Lamiaceae) 

P6903/Wood Flavonoids, iridoid glucosides: baicalein, wogonin and oroxylin. [72]

Senecio scandens 
(Asteraceae)

P6905/ Herb Pyrrolizidine alkaloids, terpenoids: lupenone, oleanane, β-sitosterol, daucosterol, adonifoline, 
phydroxy benzeneacetic acid, 2-(1,4-dihydroxy-cyclohexanyl) -acetic acid, hyperoside, linarin.

[73]

Spatholobus suberectus 
(Fabaceae) 

P6907/Bark Flavonoids: 3’,4’,7-trihydroxyflavone, eriodictyol, plathymenin, dihydroquercetin, butin, 
neoisoliquiritigenin, dihydrokaempferol, liquiritigenin, and 6-methoxyeriodictyol. Ononin, pruneitin, 
gallocatechin, catechin, epicatechin, syringic acid, vanillic acid and daucosterol.

[74]

Taxillus chinensis 
(Loranthaceae) 

P6909/Herb Flavonoids: avicularin, quercetin, hyperin, d-catechol and quercitrin [75]

all the tested doses as different variables. Cluster I included samples 
were the strongest CYP inhibitors. This cluster comprises Acacia 
catechu, Andrographis paniculata, Arctium lappa, Artemisia annua, 
Artemisia capillaris, Belamcanda chinensis, Bupleurum marginatum, 
Chrysanthemum indicum, Chrysanthemum morifolium, Polygonum 
cuspidatum, Sanguisorba officinalis, and Spatholobus suberectus. These 
samples mostly clustered in the right quadrant. Cluster II was also 
found in the same right quadrant exhibiting a moderate CYP inhibition 
(both the water and alcoholic extracts). The left side of the PCA plot 
contained all samples with an inhibition lower than approximately 50% 
at the lowest tested dose. They were subdivided into three main clusters 
(cluster III, IV, and V).
From the results displayed in Table 1 and Table 2, and the multivariate 
analysis, it is obvious that the majority of secondary metabolites reported 
in both chemical abstracts and Medline for the corresponding bioactive 
extracts are phenolic secondary metabolites [Figure 3]. These compounds 
were docked on CYP3A4 to validate the observed biological activity 
[Table 3]. The results revealed that two flavonoids namely hesperidin and 
rutin were the most potent CYP3A4 inhibitors as evidenced from their 
high fitting scores and consequently, higher stability within the active 
sites as compared with the lead compound. The binding energies were 

-74.09, -71.34, and -47.08 kcal/mol for hesperidin, rutin, and original 
lead compound (L) for the pH-based ionization mode, respectively. We 
should mention that the binding mode of the lead compound L revealed 
formation of one hydrogen or ionic bond with the residue Arg 212 of the 
CYP3A4, in addition to the formation of three π bonds, two of them with 
the amino acid residue Arg 105 while the third with Arg 212. Whereas 
for hesperidin six hydrogen or ionic bonds and a π bond were detected, 
two hydrogen bonds and a π bond are formed with the residue Arg 
105, one hydrogen bond with each of Arg 375, Asn 441, Cys 442, and 
Pro 434. Moreover, rutin forms nine hydrogen or ionic bonds, three of 
them with the residue Arg 105, two with Glu 374, and a hydrogen bond 
with each of Arg 375, Asn 441, Gly 481, and Ile 443 in addition to the 
formation of a π bond with the amino acid residue Arg 105 [Figure 4].  
Thus, the formation of extra hydrogen bonds or ionic bonds (if the 
phenolic OH-groups is dissociated) with the amino acid residues at 
the active sites of the enzyme is responsible for the comparative firm 
binding of the two flavonoids with respect to the lead compound. This 
was revealed from the results of the molecular docking using the rule-
based ionization mode [Table 3] that examine the influence of ionization 
of various functional groups on its interaction at the binding site.
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Table 3: In silico molecular modeling of some selected major compounds 
from our TCM plants on CYP3A4 applying both pH and rule based ionization 
modes

Compound Binding energy (Kcal/mol)

pH‑based Rule‑based
Hesperidin -74.09 -63.90
Rutin -71.34 -71.34
Asiaticoside -70.07 -87.72
12-O-tetradecanoylphorbol-13-acetate -69.48 -71.60
Lonicerin -69.14 -69.14
Fisetinidol-(4α-8)-catechin -63.92 -66.76
Belalloside A -58.33 -58.33
Loddigesiinol G -57.45 -59.62
Luteolin-7-O-β-glucoside -53.00 -59.18
Podophyllotoxin -49.46 -49.47
Piceid -49.40 -49.40
Linarin -48.90 -45.91
Arctigenin -48.27 -46.51
Avicularin -47.80 -48.43
 (Ligand: L) -47.08 -46.51
Neoisoliquiritigenin -47.07 -48.96
Heliantriol -44.34 -44.33
Oleanolic acid -43.18 -51.73
Andrographolide -43.06 -40.68
Capillaridin A -42.90 -42.91
Ophioglonin -41.86 -41.86
Eleutheroside B -41.64 -43.27
Ursolic acid -41.60 -52.43
Catechin -39.38 -41.85
6-O-Angeloylplenolin -39.26 -39.26
Berberine -38.04 -38.04
Quercetin -37.89 -37.89
3,3’,4’-tri-O-methylellagic acid -37.60 -37.60
Wedelolactone -36.20 -31.83
Neoechinulin A -33.60 -33.60
Physcione -32.93 -32.93
Baicalein -31.79 -31.79
Chrysophanol -29.12 -29.12
Artemisinin -29.11 -29.11
Dendrobine -28.72 -26.65
Scopoletin -26.14 -26.13
Arecoline -24.90 -24.89
Chrysanthediol B -23.63 -23.63

DISCUSSION
The notable CYP3A4 inhibitory activity of many of the tested plants could 
be interpreted in virtue of their secondary metabolites mainly because 
of polyphenolic class of compounds. One of the underlying causes of 
this potent efficacy could be attributed to the formation of hydrogen and 
ionic bonds at the active sites of an enzyme due to the existence of several 
reactive phenolic OH groups. The phenolic hydroxyl groups can partly 
dissociate under physiological conditions resulting in O− ions interacting 
with positively charged amino groups, such as in arginine, lysine, and 
histidine. The charged and polar polyphenols interact with proteins by 
forming ionic bonds in addition to hydrogen bonds with several amino 
acids at the active site which might lead to enzyme inhibition and loss of 
function.[29]

In the same context, extracts from the heartwood of A. catechu (Fabaceae) 
exhibited a potent CYP3A4 inhibition that could be attributed to the high 
contents of catechins and epicatechins (≈50% of the content) that were 
previously reported to inhibit CYP3A4.[30,31] Additionally, the activity 
of A. catechu (Arecaceae) could be ascribed to their contents of tannins 
with their polyphenolic structures especially arecatannin A1–A3 which 
are abundant in both extracts; as polyphenols they are able to bind the 

Figure 1 (a): Overview of Cytochrome P450 3A4 inhibition by 100 μg/mL 
of the aqueous and methanol extracts of 57 TCM plants.

Figure 1 (b): Overview of Cytochrome P450 3A4 inhibition by 100 μg/mL 
of the aqueous and methanol extracts of 57 TCM plants.

Figure 1 (c): Overview of Cytochrome P450 3A4 inhibition by 100 μg/mL 
of the aqueous and methanol extracts of 57 TCM plants.

enzyme directly. Moreover, the alkaloid content with mainly arecoline 
(in the methanol extract) could contribute to the overall activity 
although this action has not been described for CYP3A4, but arecoline 
significantly inhibits other forms of cytochrome especially CYP1A1.[32]

Besides, a plethora of secondary metabolites with exocyclic methylene 
groups as sesquiterpene lactones or reactive double or triple bonds can 
covalently bind to proteins with SH groups. These protein modification 
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rather than the alcoholic extracts. Besides, the presence of lignans with 
a methylenedioxy group in an aromatic ring which are known CYP 
inhibitors[29] and saikosaponins, which showed a significant inhibition of 
both CYP1A2 and CYP3A4 may have significantly boosted the efficacy.[35]

An additional representative empathizing on the difference between the 
potency of water and methanol extracts is M. bealei (Berberidaceae) 
where the alcoholic extract exerted higher inhibitory activity than the 
aqueous one. This notable activity could be explained in view of its 
richness of alkaloids as berberine which carries a methlenedioxy group-a 
known inhibitor of CYP1A1 and a substrate for the CYP2C9 and 
CYP2D6.[36,37] However, the presence of few polyhydroxylated flavonoids 
could explain the moderate activity of the aqueous extract.

CONCLUSIONS
In this study, the effects of 57 widely used TCM plants on the key 
metabolizing enzyme CYP3A4 were assessed to understand the potential 
adverse effects that might occur by concomitant administration of many 
herbal preparations with other drugs. In addition, plant secondary 
metabolites can also inhibit or stimulate the expression of CYP genes. 
Since the aqueous extracts of many medicinal plants inhibit the activity 
of cytochrome p450 enzymes in vitro, as a consequence many adverse 
interactions can be expected. Furthermore, in vitro and in vivo studies 
are required on other cytochrome P450 isoforms to help patients who 
rely on phytomedicine beside other western medicine in treatment 
avoiding hazards that might be serious.
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