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ABSTRACT
Objective: Vincamine is a plant alkaloid used clinically as a peripheral 
vasodilator that increases cerebral blood flow and oxygen and glucose 
utilization by neural tissue to combat the effect of aging. The main 
purpose of the present study is to investigate the influence of vincamine 
on amyloid‑β 25–35  (Aβ25–35) induced cytotoxicity, to gain a better 
understanding of the neuroprotective effects of this clinically used 
anti‑Alzheimer’s disease drug. Materials and Methods: Oxidative 
stress was assessed by measuring malondialdehyde, glutathione, and 
superoxide dismutase  (SOD) levels. Cell viability was assessed by 
3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide assay. Cell 
apoptosis detection was performed using an Annexin‑V‑FITC Apoptosis 
Detection Kit. The production of reactive oxygen species  (ROS) was 
determined using an ROS Assay Kit. Western blot detection was carried 
out to detect the protein expression. Results: Our studies showed that 
pretreatment with vincamine could reduce Aβ25–35 induced oxidative 
stress. Vincamine markedly inhibited cell apoptosis dose‑dependently. 
More importantly, vincamine increased the phosphatidylinositol‑3 
kinase (PI3K)/Akt and Bcl‑2 family protein ratios on preincubation with cells 
for 2 h. Conclusion: Above observation led us to assume that one possible 
mechanism of vincamine protects Aβ25‑35‑induced cell death could be 
through upregulation of SOD and activation of the PI3K/Akt pathway.
Key words: Alzheimer’s disease, amyloid‑β, PC12 cells, 
phosphatidylinositol‑3 kinase/Akt pathway, vincamine

SUMMARY
• Vincamine ameliorates amyloid‑β 25–35  (Aβ25–35) peptides induced 

cytotoxicity in PC12 cells
• Vincamine reduces Aβ 25–35 peptides induced apoptosis of PC12 cells
• Vincamine activates the phosphatidylinositol‑3 kinase/Akt pathway
• Vincamine up‑regulates the superoxide dismutase.

Abbreviations used: Aβ25‑35: Amyloid‑β 25‑35; AD: Alzheimer’s 
disease; BCA: Bicinchoninic acid; GSH: glutathione; PBS: Phosphate 
buffered solution; SDS: Sodium dodecylsulphate; 
SOD: Superoxide dismutase
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INTRODUCTION
The number of people suffering from Alzheimer’s disease (AD) increases 
as the world population ages, creating a huge socioeconomic burden. AD 
is the crucial cause of dementia in people over the age of 60,[1,2] which 
is mainly characterized by three pathological hallmarks: Cholinergic 
system dysfunction, the amyloid‑β (Aβ) peptide deposition, and the Tau 
protein hyperphosphorylation.[3,4] The intercellular transfer of Aβ and 
tau proteins has received increasing attention in AD. Although the link 
of Aβ or tau protein to brain degeneration has remained elusive, the Aβ 
cascade hypothesis remains as one of the dominant hypotheses for AD 
etiology. Nevertheless, with the fact that many therapeutic approaches 
toward Aβ lowering/clearing fail to gain anticipated benefits in the 
clinical trials,[5,6] it is of great importance to further understand and 
analyze the essence of Aβ cascade theory. Currently, the extracellular 
deposit of insoluble Aβ is no longer considered as the major contributor 
for AD pathogenesis[7,8] whereas supports from numerous experimental 
paradigms have implicated the abnormal accumulation of intracellular 

Aβ oligomers is responsible for the manifestations of AD pathology.[9,10] 
Growing researches have been focused on studying the association 
between the intracellular Aβ cascade and the dysfunction of subcellular 
organelles, especially mitochondria.[11‑13] More interestingly, it is 
reported that mitochondrial Aβ levels were positively correlated with the 
extent of mitochondrial dysfunction in different brain regions in APP 
or APP/PS1 transgenic mice, and the degree of cognitive impairment 
in AD transgenic mice could be linked to the extent of synaptic 
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mitochondrial dysfunction and mitochondrial Aβ levels.[14,15] Hence, 
targeting Aβ‑associated mitochondrial dysfunction, especially blocking 
mitochondrial Aβ accumulation is expected as a promising approach for 
AD‑modifying.
Herbal medicines have been proven to be a major source of novel 
agents with various pharmaceutical activities.[16‑21] Natural products 
have provided a rich source of drugs for many diseases, including AD. 
Vincamine  [Figure  1] is an alkaloid of clinical use against the brain 
sclerosis, as well as in postoperative states of the central nervous 
system.[22] It is employed today in the therapy of cerebral metabolic 
and circulatory disorders since it combines cerebrometabolic and 
hemodynamic properties.[23‑26] Twenty years before, it was used as 
a drug for treating memory impairments. Vinpocetine, a vincamine 
derivative, efficiently protects cells from reactive oxygen species (ROS) 
attack. Recently, the protective effect of vinpocetine was demonstrated 
using in vitro models of oxidative stress induced by the oxidant pair 
ascorbate/Fe2+ and by synthetic peptides of the AD‑associated Aβ. 
Results obtained from these in vitro experiences support that additional 
clinical trials should be carried out using vincamine, or vincamine 
derivatives, to test its therapeutic or preventive effects in AD.[26]

To the best of our knowledge, in the present study, we demonstrated 
for the first time that vincamine could alleviate Aβ25–35 induced 
cytotoxicity in PC12 cells, thus providing basis for clinical application of 
vincamine in AD cases.

MATERIALS AND METHODS
Chemicals and preparation
Vincamine was purchased from Sigma Chemical Co.,  (St. Louis, MO, 
USA) and was dissolved with deionized water as stock solution. The 
drug stock solution was further diluted with deionized water to proper 
concentrations before usage. Unless otherwise stated, all other chemicals 
were purchased from Sigma (MO, USA).

Preparation and treatment with amyloid‑β 25–35
Aβ25–35 peptide  (GenScript, Piscataway, NJ, USA) stock solutions 
were freshly prepared before each treatment at 1 mM in double distilled 
deionized water, considered the soluble form. The cells were then treated 
with Aβ25–35 peptide in a range of 0–80 mM in serum‑free medium 
containing 1% PS for 24 h. Then, the cells were incubated at 37°C in a 
humidified and sterile atmosphere containing 5% CO2 for 24, 48, and 72 h.

Oxidative stress assays
Oxidative stress was assessed by measuring malondialdehyde (MDA), 
glutathione  (GSH), and superoxide dismutase  (SOD) levels. 
PC12 cells cultured in 6‑well plates  (4 × 104  cells/well) for 24 h were 
treated with various concentrations of vincamine for 3  h before the 
addition of 30 µM Aβ25–35 and further 24  h incubation. Cells were 
then digested with trypsin and washed twice in phosphate buffered 
solution (PBS). Thereafter, cells were suspended in 500 µl of PBS and 
lysed by ultrasonication in the presence of protease inhibitor before 
centrifugation at 4000  rpm for 5  min. The supernatant was collected 
for analysis. Supernatant protein concentrations were measured using 
a Bradford protein assay kit from Key Gen Biotech (Nanjing, China). 
The levels of MDA, GSH, and SOD were measured using appropriate 
kits purchased from Key Gen Biotech following the manufacturer’s 
instructions.

Detection of reactive oxygen species
PC12 cells were cultured and treated as per the oxidative stress assays. 
The production of ROS was determined using an ROS Assay Kit in 
accordance with the manufacturer’s instructions  (Beyotime, Shanghai, 
China).

Cell apoptosis assay
Cell apoptosis detection was performed using an Annexin‑V‑FITC 
Apoptosis Detection Kit  (BD Company, USA) as described 
elsewhere.[27,28] In brief, 24  h after Aβ25–35 exposure, the PC12 
cultures were washed with warm  (37°C) Krebs–Ringer solution and 
fixed with 4%  (w) paraformaldehyde in PBS for 30  min at room 
temperature. For vincamine‑treated group, cells were collected after 
24  h treatment with vincamine. The cells were washed twice with 
cold PBS then resuspended in 1× binding buffer at a concentration of 
1 × 106 cells/ml. Then 500 µl cell suspension was incubated with 5 µl 
Annexin‑V‑FITC and 10 µl propidium iodide (PI) for 15 min in the 
dark and analyzed by a FACS calibur instrument (Becton Dickinson, 
San Jose, USA) within 1  h. Apoptotic cells were those stained with 
Annexin V+/PI−  (early apoptosis) plus Annexin V+/PI+  (late 
apoptosis).

Western blot analysis
Western blot detection was carried out to detect the protein 
expression.[29,30] Briefly, following treatment of PC12  cells with 
vincamine at the corresponding concentration and for the indicated 
time, cells were harvested using trypsin ethylenediaminetetraacetic 
acid  (EDTA), washed twice with PBS, and stored at  −80°C. Cells 
were lysed in lysis buffer  (1 mM EDTA, 150 mM NaCl, 100 µg/ml 
phenyl methylsulfonyl fluoride 50 mM Tris‑HCl, pH 7.5) for 30 min 
on ice and then a particle‑free supernatant solution was obtained 
by centrifugation at 14,000  g for 15  min. All operations were at 
0–4°C. A  sample was taken for measurement of protein content by 
a bicinchoninic acid assay  (Pierce). Equal amounts of protein were 
heated in sodium dodecylsulphate  (SDS) sample buffer  (Laemmli) 
for 15  min at 95°C, separated on an 8−12% SDS‑polyacrylamide gel 
and transferred onto polyvinylidene fluoride membranes. Membranes 
blocked with 5% nonfat milk powder (w/v) in TBST (10 mM Tris, 10 
mM NaCl, 0.1% Tween 20) for 2–4 h at room temperature to prevent 
nonspecific antibody binding, and incubated with the corresponding 
primary antibody diluted in blocking buffer overnight at 4°C. After 
3  min  ×  10  min washes in TBST, blots were incubated for 1  h with 
corresponding peroxidase conjugated secondary antibody and 
developed employing a commercial kit (West Pico chemiluminescent 

Figure 1: Chemical structure of vincamine
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substrate). Blots were reprobed with an antibody against β‑actin or 
GAPDH as control of protein loading and transfer.

Statistical analysis
Data were expressed as mean ± standard error of mean Student’s t‑test was 
applied in the comparisons between two groups. Multiple comparisons 
between model group and different concentrations of vincamine‑treated 
groups were analyzed by one‑way ANOVA, followed by Dunnett test. 
Differences were considered significant at P < 0.05.

RESULTS
Determination of amyloid‑β 25–35 cytotoxicity to 
PC12 cells
The relative survival rate of PC12 cells treated with Aβ25–35 for 24 h 
decreased with increasing concentration of Aβ25–35  [Figure  2]. 
The relative survival rate was 97.6% with 1 µM Aβ25–35 and 25.8% 
with 80 µM Aβ25–35. The survival rate was approximately 50% with 
exposure to 30 µM Aβ25–35; hence, this concentration was chosen in 
all subsequent experiments for the determination of survival in response 
to different treatments.

Vincamine alleviated amyloid‑β 25–35 induced 
cytotoxicity in PC12 cells
The relative survival rate of Aβ25–35‑treated PC12 cells pretreated with 
vincamine increased with increasing vincamine concentration [Figure 3]. 
The relative survival rate was 43.5% without vincamine and 83.6% with 
80 µM vincamine (P < 0.01).

Vincamine decreased amyloid‑β 25–35 induced 
oxidative stress
Intracellular MDA concentrations were significantly increased in 
Aβ25–35‑treated cells compared with the negative control group 
cells (P  <  0.05)  [Table  1]. Vincamine decreased intracellular MDA 
concentrations in Aβ25–35‑treated cells in a dose‑dependent manner 
[Table  1]. The MDA concentrations in the vincamine‑treated groups 
were significantly lower than the concentration in the model control 
group (P  <  0.05). Intracellular GSH concentrations were significantly 
decreased in Aβ25–35‑treated cells compared with the negative control 
group cells (P < 0.05) [Table 1]. Vincamine increased intracellular GSH 
concentrations in Aβ25–35‑treated cells in a dose‑dependent manner 
[Table  1]. The GSH concentrations in the vincamine‑treated groups 
were significantly higher than the concentration in the model control 
group  (P  <  0.05). Intracellular SOD concentrations were significantly 
decreased in Aβ25–35‑treated cells compared with the negative control 
group cells  (P  <  0.05)  [Table  1]. Vincamine increased intracellular 
SOD concentrations in Aβ25–35‑treated cells in a dose‑dependent 
manner  [Table  1]. The SOD concentrations in the vincamine‑treated 
groups were significantly lower than the concentration in the model 
control group (P < 0.05).

Vincamine reduced reactive oxygen species levels
ROS levels were significantly increased in Aβ25–35‑treated cells (667.5 vs. 
192.6 fluorescence intensity units, P  <  0.05)  [Figure  4]. Vincamine 
significantly reduced ROS level in a dose‑dependent manner [Figure 4]. 
ROS levels in the vincamine 40 and 80 µΜ groups were significantly 

Figure 3: Effect of vincamine on cell viability by 3‑(4,5‑dimethylthiazol‑
2‑yl)‑2,5‑diphenyltetrazolium bromide assay in amyloid‑β 25–35‑treated 
PC12 cells. The results are expressed as mean ± standard deviation (n = 3). 
*P  <  0.05, **P  <  0.01 as compared with the amyloid‑β 25–35‑treated 
group

Table 1: Effects of vincamine on Aβ25‑35‑treated PC12 cells

Negative 
control

Aβ25-35 Vincamine 
(20 µM)

Vincamine 
(40 µM)

Vincamine 
(80 µM)

MDA (nmol/mg) 13.3±1.5 59.2±5.3 51.2±3.2* 24.2±1.3* 18.9±4.1**
GSH (U/mg) 745±46 255±49 411±23** 501±55** 709±38***
SOD (U/mg) 28.37±0.3 12.17±1.3 14.56±2.5 24.58±3.6** 25.22±0.7**

*P<0.05 compared to Aβ25‑35‑treated group; **P<0.01 compared to Aβ25‑35‑treated 
group; ***P<0.001 compared to Aβ25‑35‑treated group. MDA:  Malondialdehyde; 
SOD: Superoxide dismutase; GSH: Glutathione

Figure  2: Effect of amyloid‑β 25–35 on cell viability by 
3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide assay in 
PC12 cells. (a) Cells treated with amyloid‑β 25–35  (0–80 µM) for 24  h. 
(b) Cells treated with 30 µM amyloid‑β 25–35 for 0, 12, 24, 36, 48, 60 
and 72 h. All results are expressed as mean ± standard deviation (n = 3). 
*P < 0.05, **P < 0.01, ***P < 0.001 as compared with the control group
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lower than the level in the model control group  (365.2 and 286.6  vs. 
667.5 fluorescence intensity units, P < 0.05).

Anti‑apoptotic effect of vincamine
An Annexin V‑FITC and PI double stain were used to evaluate the 
percentages of apoptosis. The rate of apoptosis was significantly 
increased in Aβ25–35‑treated cells compared with the negative control 
group cells (75.8 vs. 4.8%, P < 0.05) [Figure 5]. Vincamine significantly 
reduced the rate of apoptosis in a dose‑dependent manner [Figure 5]. 
The rate of apoptosis in the three vincamine groups was significantly 
lower than the rate in the model control group (57.3, 35.6, and 25.3 vs. 
75.8%, P < 0.05).

Vincamine regulated Akt and phospho‑Akt levels in 
PC12 cells
To gain a better insight into anti‑apoptotic effect of vincamine, we 
detected protein expression of apoptosis marker molecular. Akt, and 
phospho‑Akt were examined by Western blotting. Results showed that 
Aβ25–35 increased the phospho‑Akt/Akt ratio. Vincamine (20, 40, and 
80 µM) increased the phospho‑Akt/Akt ratio after preincubation for 2 h. 

Figure 4: Intracellular reactive oxygen species produced after amyloid‑β 
25–35 induced oxidative stress in PC12 cells with and without vincamine. 
Student’s t‑test was performed to evaluate the significance of the results. 
*P < 0.05, **P < 0.01, vincamine‑treated cells compared with respective 
control. Results are mean ± standard deviation (n = 3)

Figure 5: Vincamine attenuated amyloid‑β 25–35 induced neurotoxicity in PC12 cells. (A) Apoptosis analysis of PC12 cells treated with amyloid‑β 25–35, 
vincamine, or a combination of them. (a) Untreated cells; (b) 30 µM amyloid‑β 25–35‑treated cells; (c) 30 µM amyloid‑β 25–35 + 20 µM vincamine‑treated 
cells; (d) 30 µM amyloid‑β 25–35 + 40 µM vincamine‑treated cells; (e) 30 µM amyloid‑β 25–35 + 80 µM vincamine‑treated cells. Cells were exposed for 48 h. 
Double staining was used to distinguish between viable (lower left quadrant, annexin V‑negative, propidium iodide‑negative), early apoptosis (lower right 
quadrant, annexin V‑positive, propidium iodide‑negative), late apoptosis and necrotic (upper right quadrant, annexin V‑positive, propidium iodide‑positive) 
and cell debris (upper left quadrant). Statistical analysis is shown in (B). *P < 0.05, **P < 0.01, amyloid‑β 25–35, vincamine or both treated cells compared 
with untreated control cells. #P < 0.05, ##P < 0.01, vincamine‑treated cells compared with 30 µM amyloid‑β 25–35‑treated cells. Results are mean ± standard 
deviation (n = 3)
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These data suggested that vincamine could provide neuroprotection from 
Aβ25–35 induced PC12 apoptosis through the phosphatidylinositol‑3 
kinase/Akt signaling pathway [Figure 6a].

Bcl‑2 family proteins were involved with the 
anti‑apoptotic effect of vincamine
We next investigated the expression of Bcl‑2 families, which regulated 
mitochondrial apoptosis and could be separated into pro‑survival 
members  (such as Bcl‑2, BclxL, and Mcl‑1), as well as pro‑apoptotic 
proteins (such as Bax). As shown in Figure 6b, after vincamine treatment, 
Bcl‑2 was upregulated significantly and Bax was downregulated on the 
contrary. These results are consisted with the general notion that Bcl‑2 
and Bax play pivotal role in regulating mitochondrial apoptosis pathway.

DISCUSSION
AD, the most prevalent form of dementia in older adults, is a chronic 
progressive neurodegenerative disorder.[31] AD patients have severe 
progressive cognitive dysfunction, memory impairment, behavioral 
symptoms and loss of independence.[32] According to AD International, 
at least 35.6 million people had dementia in 2010, with the numbers 
nearly doubling every 20  years.[33] Many factors contribute to the 
etiology of AD, elevated Aβ and loss of nicotinic acetylcholine 
receptors being prominent.[34] Although the neuroprotective effects 
of vincamine have attracted intense interest in recent years, the exact 
molecular mechanisms underlying have not yet been clarified. The major 
impressive characteristics of the present study are novel anti‑apoptotic 
and antioxidant effects of vincamine.
Aβ plays a pivotal role in the mitochondrial dysfunctions because 
mitochondrial deficits like oxidative stress, energy deficiency, and 
mitochondrial depolarization were frequently seen in Aβ‑treated 
cell models and Aβ over expression animal models.[11,35,36] Therefore, 
reversing Aβ‑associated oxidative stress may provide an opportunity to 
recover AD.
In the current study, we found that vincamine administration could 
effectively reduce Aβ induced cytotoxicity, which is the first report 
of vincamine reducing Aβ induced cytotoxicity to our knowledge. 

Vincamine has been reported to probably hydrolyze in the rat plasma 
into vincamic acid  (a hydroxycarboxylic acid) that could possibly 
form a complex with Fe and excreted in urine and subsequently the Fe 
level reduced in the brain.[37] Vincamine was completely metabolized 
and excreted in urine as sulfates and glucuronide conjugates.[38] 
Vincamine could be useful in aged people because it reduces the brain 
Fe concentration and subsequently prevents the oxidative damage of Fe 
on neural cells. Vincamine has been reported to cross the blood–brain 
barrier, and its antioxidant scavenging capacity to inactivate hydroxyl free 
radicals was actually ranked in part with Vitamin E.[39] Iron is believed 
to accumulate in high concentration in neurodegenerative diseases such 
as Parkinson’s, Alzheimer’s, and Huntington’s diseases and contribute to 
oxidative stress and subsequently lead to neuronal death.[40]

Dietary phytochemicals consist of a wide variety of biologically active 
compounds that are ubiquitous in plants, many of which have been 
reported to have pharmaceutical properties. Epidemiological studies 
have shown that natural components may play an important role in 
preventing human diseases.[41‑45] Among them, vincamine, which 
is abundant in Vinca minor L., has been reported to have therapeutic 
potential for treating many human diseases.[46,47]

In addition to looking at indicators of oxidative damage, we also examined 
the concentrations of several important antioxidants, GSH, and SOD. In 
keeping with oxidative stress findings, we found that concentrations of 
both GSH and SOD were significantly increased in PC12 cells pretreated 
with vincamine before Aβ25–35 treatment. This is an important finding, 
given that decreases in the expression of both GSH and SOD have been 
implicated in the development of AD and other neurological diseases.[48,49]

Unsurprisingly, given the decreased oxidative damage and higher 
concentrations of antioxidants, we found that survival was significantly 
increased and apoptosis was significantly decreased in PC12  cells 
pretreated with vincamine before Aβ25–35 treatment compared with 
PC12 cells treated with Aβ25–35 alone. Our data showed that pretreatment 
with vincamine markedly increased the survival percentage of PC12 cells 
subsequently treated with Aβ25–35. The finding of decreased apoptosis 
is noteworthy because increased apoptotic signaling/neuronal death is 
thought to contribute to the pathology of neurodegenerative disorders, 
including AD.[50]

CONCLUSION
Our research for the first time found that vincamine, a natural alkaloid, 
ameliorated the deleterious effects of Aβ25–35 in PC12 cells. Specifically, 
vincamine increased cell survival, decreased apoptosis and cytotoxicity, 
and decreased the concentrations/activities of a variety of indicators of 
oxidative stress. We believe that these are promising findings that support 
the continued investigation of vincamine as a potential treatment for 
AD. Our data might shed more light on the clinical benefits gained by 
vincamine and provide useful clues for future AD drug development, 
however, the precise mechanisms underlying the beneficial effect of the 
drug needs further investigation.
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Figure  6: Phosphatidylinositol‑3 kinase/Akt pathway was involved in 
the anti‑apoptotic effects of vincamine. (a) PC12 cells were treated with 
vincamine for 2 h. Akt and its phosphorylation were detected by Western 
blotting. β‑actin served as a control for loading. (b) Protein expression of 
Bcl‑2, Bax in PC12 cells after indicated treatments was also measured by 
Western blots. GAPDH served as a control for loading
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