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609.2  →  301.1 for hesperidins  (IS) respectively. The 
chromatographic analysis was achieved on a hypersil gold 
column  (100  mm  ×  2.1  mm i.d., 1.9 μm particle size; 
Thermo, USA). The mobile phase consisted of  0.05% 
formic acid in water (A) and acetonitrile (B) at a flow rate 
of  0.4 mL/min. The UHPLC gradient system began with 
15% B at 0–1 min, 15–60% B at 1–5 min, 60–100% B at 
5–6 min. The column temperature was maintained at 40°C, 
while the sample‑tray temperature was kept at 4°C.

The method had linear calibration curves over the 
concentrations of  1.95–1500.0 ng/mL for PD in rat plasma, 
1.47–1500 ng/mL in HBSS buffer and 1.47–1500 ng/mL in 
inactivated fecal lysate solution. The extraction recoveries 
were 74.3–86.6%, 101.3–104.8% and 94.4–97.5% for PD 
in rat plasma, HBSS buffer and inactivated fecal lysate 
solution respectively. The lower limit of  quantification 
for PD was 1.95  ng/mL in rat plasma, 1.47  ng/mL in 
HBSS buffer and 1.47 ng/mL in inactivated fecal lysate 
solution, respectively. The intra and inter‑batch precision 
and accuracy were <20% for all quality control samples 
in rat plasma, transport buffer and fecal lysate solution.

Data analysis
The data in this paper were presented as mean tedt for 
each group, if  not specified otherwise. Significance was 
assessed by one way analysis of  variance and Student’s t‑test. 
A P value of  < 0.05 was considered statistically significant.

RESULTS AND DISCUSSION

Oral pharmacokinetics of platycodin D in rats
The plasma concentrations of  PD in rats were determined 
after following oral administration of  single PD at 
20  mg/kg and equivalent dose of  PRE. The results 
[Figure 2 and Table 1] showed that single PD was rapidly 

absorbed into the circulatory system and reached its peak 
concentration. PD was detected in rat plasma at 10 min 
after oral administration of  single PD and PRE, and 
reached Cmax at approximately 30 min and 75 min with Cmax 
approximately 44.45 ng/mL and 17.94 ng/mL, respectively. 
The AUC (0‑∞) of  PD in rats receiving the single PD was 
low (73.00 ± 24.17 ng h/mL), which was consistent with 
the previous results.[16,18] The AUC(0‑∞) of  PD after an 
equivalent dose of  PRE to rats was observed to 96.06 ± 
48.51ng h /mL, which was significantly higher than that in 
rats receiving the single PD, indicating PD in PRE is more 
exposed to blood circulation than single PD. MRT describes 
the average time for all the drug molecules to reside in the 
body. MRT (0‑t) of  PD was also increased from 1.38 ± 0.20 h 
(single PD) to 6.10 ± 1.03 (PD in PRE), which showed PD 
in PRE duration in vivo prolonged, compared to single PD. 
Previously, Zhan et al.,[18] reported the pharmacokinetics of  
PD between in monomer PD and in PRE. There were some 
differences between the previous report and our study, 
which may be attributed to the different doses to rats. In 
Zhan’s study, the oral dosage of  single PD and PRE was 
80mg/kg and 18.75 g/kg respectively, while the oral dosage 
was 20 mg/kg and 10 g/kg (corresponding equivalent PD) 
in our present study. The appearance indicated that the 
other ingredients contained in PRE, like saponins, may 
influence the absorption or metabolism of  PD.

Transcellular transport of platycodin D across Caco‑2 
cell monolayer
We determined the apparent permeability of  PD both in 
PRE and in monomer PD in Caco‑2 cell monolayers, a 
model employed to mimic human intestinal absorption 
characteristics.[21,22] Transport of  0.45 μg/mL PD and 
PRE  (200 μg/mL, equivalent to 0.45 μg/mL PD) 
from apical side to basolateral side in Caco‑2 cells were 
determined within 2 h to understand whether the coexisting 
components in PRE could influence the transport of  PD.

The result  of  3‑(4,  5‑Dimethylthiazol‑2‑yl)‑2, 
5‑diphenyltetrazolium bromide assay showed that single 

Figure 2: Mean concentration‑time profiles of platycodin D in rat plasma 
after oral administration of Platycodi radix extract (10 g/kg) and single 
platycodin D (20 mg/kg) (mean ± standard deviation, n = 6)

Table 1: Pharmacokinetic parameters of PD in rats 
following oral administration of PRE (10 g/kg) and 
single PD (20 mg/kg) (mean±SD, n=6)
Parameter PD PRE
Cmax (ng/mL) 44.45±22.40 17.94±9.33*
t1/2 (h) 1.32±0.64 2.86±1.07*
Tmax (h) 0.44±0.17 1.22±0.62*
AUC(0-t) (ng h/mL) 71.26±24.17 88.97±45.42
AUC(0-∞) (ng h/mL) 73.00±24.17 96.06±48.51*
MRT(0-t) (h) 1.38±0.20 6.10±1.03*

*P<0.05 compared with PD group. PD: Platycodin D; PRE: Platycodi radix extract; 
AUC: Area under the curve; MRT: Mean residence time; Cmax: The peak concentration; 
Tmax: The time to reach peak concentration; SD: Standard deviation; t1/2: Half-life
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PD and PRE at the working concentrations had no toxicity 
on Caco‑2 cells within 2 h. The TEER values (>300 Ωcm2) 
were not different significantly before and after the transport 
experiment. The results showed that the permeability of  
PD in monomer and in PRE was 3.52×10−7 cm/s and 
2.11×10−7 cm/s  respectively, corresponding to incomplete 
absorption in humans (1×10−6 cm/s),[21] which indicated 
that PD, like a lot of  saponins, was poorly permeable.
[23] PD in PRE also exhibited poor permeability but a 
little lower than that of  in monomer PD, which implied 
that the coexisting components in PRE could affect the 
transport of  PD. A lot of  other platycodins in PRE may 
competitively inhibit the transport of  PD from apical side 
to basolateral side. Transcellular transport across Caco‑2 
cell monolayer declared that the absorption did not result 
in the phenomenon that higher level of  PD exposure in 
PRE than single PD.

Hydrolysis of platycodin D in fecal lysate
The result of in vitro hydrolysis study of  PD by rat fecal 
lysate was presented in Figure 3. PD was hydrolyzed rapidly 
in fecal lysate, and decreased by 64% within 30 min. The 
intensity of  hydrolyzation slightly diminished and the 
concentration of  PD plateaued around 2 h, only about 
20% PD presented at this time point. There are two 
unbranched sugar chains attached to the carbons C‑3 and 
C‑28 in the aglycones in PD, and each chain is composed 
of  one  (C‑3) and four monosaccharide  (C‑28) residues. 
In intestinal bacteria, the major pathway of  metabolism 
of  PD is the hydrolysis of  C‑3 glycoside, followed by 
acetylation at the multi‑site or, alternatively, further 
hydrolysis at the C‑28 oligosaccharide and dehydroxylation 
of  the alglycone part.[24,25] Furthermore, we are identifying 
the intestinal bacteria, such as β‑glucosidases, potentially 
responsible for this metabolism to facilitate future 
metabolic studies of  PD.

Be similar to single PD, PD in PRE was hydrolyzed 
immediately in a remarkably short time  (30 min), about 
30% PD disappeared. However, the concentration of  PD 
increased slightly within 1–4 h, and then the hydrolyzation 
eased step by step. The residue of  PD in PRE was more 
about 1.6 fold than free PD in fecal lysate within 48 h. This 
pattern of  distinctive hydrolysis in fecal lysate between 
single PD and PD in PRE, to a large extent accounted 
for their difference of  pharmacokinetics. In PRE, there 
are many platycodins, like PD, such as PD 2, PD 3, and 
platycoside E. All these platycosides can be defined as 
bidesmosidic oleanane‑type triterpenes with two sugar 
moieties: A glucose unit attached through an ether linkage 
at C‑3 of  a triterpene, and the other embracing arabinose, 
rhamnose, and xylose in sequence with attachment of  a 
glycoside linkage between C‑28 and arabinose.[5] These 
bidesmosidic saponins can be easily transformed into 
second platycodins by alkaline hydrolysis or intestinal 
microflora. So the other platycodins of  PRE may be 
deglycosylated to PD under the microbial hydrolysis, which 
accounted for the concentration of  PD in PRE increased 
slightly within 1–4 h. The biotransformation and metabolic 
profile of  plentiful platycodins by intestinal microflora 
using high resolution mass spectrometry will be further 
investigated.

CONCLUSION

In summary, the pharmacokinetics, intestinal absorption 
and microbial metabolism of  PD both in monomer and 
in PRE have been studied. The transmembrane behavior 
of  PD was investigated by Caco‑2 cells, showed it could 
not be absorbed well in intestine. It was demonstrated that 
the distinctive hydrolysis, not absorption, was the main 
reason for their difference of  pharmacokinetics. Better 
understanding of  the interactions between PD and the 
coexisting platycodins in the PRE will be investigated for 
further development of  Platycodi Radix resources.
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