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Background: The combination of artemisinin and transferrin exhibits versatile anticancer 
activities. In previous, we successfully prepared artemisinin and transferrin-loaded magnetic 
nanoliposomes and evaluated their anti-proliferative activity against MCF-7 and MDA-MB-231 cell 
lines in vitro. In this study, we investigate the in vivo anti-breast cancer activity of artemisinin 
and transferrin-loaded magnetic nanoliposome against breast transplanted tumors in BALB/c 
mice model. Materials and Methods: Artemisinin and transferrin-loaded magnetic nanoliposomes 
were prepared and characterized for some physiochemical properties. Pieces of tumor tissue 
from the breast cancer-bearing BALB/c mice were transplanted subcutaneously to the syngeneic 
female BALB/c mice. In the presence of the external magnet that placed at the breast tumor site, 
the tissue distribution and tumor-suppressing effects of prepared nanoliposomes on tumor growth 
was evaluated. Results: The prepared nanoliposomes have fine spherical shape, rough surface, 
nano-sized diameter and magnetic properties. At 2 h after treatment, the intravenous administration 
of artemisinin and transferrin‑loaded magnetic nanoliposomes followed using the magnetic field 
approximately produced 10- and 5.5-fold higher levels of artemisinin and transferrin in the tumors, 
respectively, compared with free artemisinin and transferrin. Moreover, in the presence of an 
external magnetic field, the prepared nanoliposomes could significantly induce apoptosis in the 
mice breast cancer cells as well as could reduce tumor volume in tumorized mice at 15 days after 
treatment. Conclusion: The data suggested that the artemisinin and transferrin-loaded magnetic 
nanoliposomes would be a good choice for the breast tumor-targeted therapy, due to its high 
targeting efficiency.
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INTRODUCTION

Artemisinin [Figure 1], as a sesquiterpene lactone, found 
in sweet wormwood (Artemisia annua L.), and it possesses 
a range of  biological and medicinal properties, including 
anti‑malaria and anti‑cancer activities.[1] However, the 
hydrophobicity of  artemisinin and its nonselective targeting 
toward cancer cells could limit its biomedical use.[2] It 
has been documented that cancer cells in the presence 
of  transferrin were more susceptible to artemisinin 
cytotoxicity.[3]

Previous investigations showed that the covalently tagging 
artemisinin to transferrin and encapsulation of  artemisinin 
in drug delivery systems could partly resolve the artemisinin 
water insolubility, but it could not resolve the specific 
targeting to tumor cells.[4,5]

As an interesting approach to drug delivery research, 
the co‑encapsulation of  artemisinin and transferrin into 
magnetic drug delivery nanosystems such as magnetic 
nanoliposomes might be able to overcome these 
limitations.[6]

Magnetic liposomes act as “intelligent” drug delivery 
systems because these carriers could congregate around the 
magnetic site and, therefore, could use as drug transporter 
to the therapeutic site in the cancer therapy.[7‑9] Moreover, 
magnetic liposomes have various applications such as 
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hyperthermia cancer therapy and image contrasting in 
magnetic resonance imaging.[10]

In previous, we have successfully prepared artemisinin and 
transferrin‑loaded magnetic nanoliposomes. Moreover, 
our group found that prepared nanoliposomes in the 
presence of  an external magnetic force have excellent 
anti‑proliferation activity against MCF‑7 and MDA‑MB‑231 
cell lines. In the present study, in vivo anticancer efficiency of  
artemisinin and transferrin‑loaded magnetic nanoliposomes 
against breast tumor in BALB/c mice model was evaluated.

MATERIALS AND METHODS

Chemicals
Artemisinin (purity ≥98%), distearoyl phosphatidylcholine 
(DSPC), dipalmitoyl phosphatidylcholine (DPPC), 
cholesterol (CHOL), transferrin and magnetic iron oxide 
were purchased from Sigma (St. Louis, USA). Acetonitrile 
was purchased from Merck (Darmstadt, Germany).

Mice
Seventy‑eight female inbred BALB/c mice (7–9 weeks old, 
20–22 g) were purchased from Pasteur Institute, Tehran, 
Iran. They were kept in animal houses, given sterilized 
water and standard mouse food throughout the study. 
Animal care and protocols were performed and approved 
by the Institutional Animals Ethics Committee of  Borujerd 
Branch, Islamic Azad University (Number: 120, Borujerd, 
Iran, 4/3/2014).

Preparation of nanoliposomes
The artemisinin and transferrin‑loaded magnetic 
nanoliposomes were prepared by our previous described 
method.[6] In brief, the proper molar ratio 26:4:6 of  DPPC, 
DSPC and CHOL was determined using one variable 
at a time method. Then, these lipids were dissolved in 
chloroform and dried. The dried lipids were dispersed 
in artemisinin, transferrin, and magnetic iron oxide 
solution and sonicated. Subsequently, small magnetic 

nanoliposomes were obtained by extruding the dispersions 
through 100‑nm‑pore polycarbonate filters. The control 
magnetic nanoliposomes were prepared similarly, but 
PBS (pH, 7.4) was used instead of  the artemisinin and 
transferrin solutions.

Physiochemical characterization
As descr ibed previously,  the contents of  the 
artemisinin, transferrin and magnetic iron oxide in the 
nanoliposomes were evaluated using high performance 
liquid chromatography (Perkin Elmer, USA) and 
spectrophotometer (Shimadzu, Japan), respectively.[6,11] 
Then, the loading efficiency of  artemisinin, transferrin, 
and magnetic iron oxide was calculated.[6]

As reported previously, the magnetic properties 
and morphology of  prepared nanoliposomes were 
analyzed by vibrating sample magnetometer (Meghnatis 
Daghigh Kavir Co., Iran) and cryo‑transmission electron 
microscopy (cryo‑TEM), respectively.[12,13]

The zeta‑potential, polydispersity index and mean particle 
size of  nanoliposomes were determined using Malvern 
zetasizer (Malvern instrument, Worcestershire, UK) 
apparatus.[14]

Mice tumor model
Spontaneous mouse mammary tumor [Figure 2], as an 
invasive ductal carcinoma was spontaneously developed 
in the female BALB/c mice.[15] The diagnosis of  ductal 
carcinoma in tumorized mice was evaluated by the 
histopathological method as described previously.[16] In 
brief, the isolated tumors were fixed in 10% formaldehyde, 
passaged, and embedded in paraffin. Subsequently, 
prepared paraffin blocks were sectioned and stained with 
hematoxylin and eosin. The tumor transplantation in the 
mice was performed by previously described method.[17] In 
brief, the tumor from the breast cancer‑bearing BALB/c 

Figure 1: Artemisinin structure Figure 2: Spontaneous mouse mammary tumor
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mice was separated and then cut into pieces of  <0.5 cm3. 
Subsequently, each piece was transplanted subcutaneously 
to the female BALB/c mice. These mice were studied 
2 weeks after transplanted.

Treatment of tumorized mice
Breast cancer bearing mice were divided into 6 groups and 
treated daily with different administration modalities as 
follows: Group 1, intravenous (i.v.) administration of  control 
nanoliposomes (without artemisinin and transferrin) under 
an external magnetic force; group 2, i.v. administration 
of  free artemisinin, transferrin and magnetic iron oxide 
without a magnetic force; group 3, i.v. administration of  
free artemisinin, transferrin and magnetic iron oxide under 
an external magnetic force; group 4, i.v. administration of  
artemisinin and transferrin‑loaded magnetic nanoliposomes 
without a magnetic force; group 5, i.v. administration of  
artemisinin and transferrin‑loaded magnetic nanoliposomes 
under an external magnetic force; the control group, i.v. 
administration of  1 mL PBS solution. In groups 1, 3 and 5 
as an external magnetic force, a piece of  magnet (1 by 1 by 
0.3 cm) was placed at the breast tumor site.

In groups 1–5, the dose of  artemisinin, transferrin, 
and magnetic iron oxide were fixed at 100, 102.4 and 
79.44 μg/1 mL PBS, respectively. All preparations were 
administered via the tail vein as a short infusion. These 
mice were used for subsequent experiments.

Artemisinin, transferrin and iron oxide distribution
At 2 h after treatment, three mice in groups 1–5 were 
killed for collection of  blood and isolation of  tumor. 
Tumors were homogenized in a 4‑fold volume of  PBS, 
and the 20% homogenate was mixed with an equal volume 
of  acetonitrile for the deproteinization. The homogenate 
mixture was centrifuged at 1000 g for 10 min to obtain 
a supernatant. Blood was centrifuged at 1250 g for 
0.5 min to obtain plasma samples. The concentrations of  
artemisinin, transferrin and magnetic iron oxide in these 
biologic samples (supernatants of  tumor homogenates 
and plasma) were determined in triplicate as described 
previously.[6,11]

Tumor volume
To evaluate the antitumor effect of  i.v.‑administered 
artemisinin, transferrin and magnetic iron oxide 
preparations, the remaining breast cancer bearing mice were 
divided into 6 groups (n = 10 for each group) and treated 
with different administration modalities as described above. 
Tumor volumes were monitored periodically over 15 days 
after treatment. Tumor volume was estimated by the 
previously described equation: 1⁄2 × Dmax × (Dmin)

2, where 
Dmax is the maximal tumor diameter and Dmin is the 
corresponding perpendicular diameter.[18]

Histological examination
Fifteen days after treatment, mice were killed and 
apoptosis rates of  tumor cells were analyzed as described 
previously.[19] In brief, the isolated tumors were fixed in 
10% formaldehyde, embedded in paraffin. Subsequently, 
the paraffin blocks were sectioned and deparaffinized, 
and permeabilized with proteinase K. Finally, the TdT 
mediated dUTP Nick End Labeling staining was done to 
visualize the fragmented DNA directly by fluorescence 
microscopy.

Data analysis
All data were expressed as means ± standard deviation. 
The One‑way ANOVA was performed to determine the 
significance levels among the tested groups and tumor 
volumes and the P < 0.05 were considered statistically 
significant.

RESULTS

Physicochemical properties of nanoliposomes
The entrapment rate of  artemisinin, transferrin and magnetic 
iron oxide in the nanoliposomes was 83.06% ± 0.53%, 
80.12% ± 0.12% and 66.14% ± 0.42%, respectively. The 
average size, zeta‑potential and polydispersity index of  
nanoliposomes were 95.06 ± 0.15 nm, −1.40 ± 0.22 mv 
and 0.19 ± 0.09, respectively. In this study, the results from 
nanoliposomes size distribution showed a monomodal 
pattern. The magnetic properties of  the nanoliposomes 
were analyzed by vibrating sample magnetometer at 
room temperature. The saturation magnetizations for 
nanoliposomes were 30.5 electromagnetic units per 
gram (emu/g) and the cryo‑TEM analysis showed that 
the nanoliposomes have a fine spherical shape and rough 
surface [Figure 3].

Figure 3: Cryo-transmission electron micrographs of the artemisinin 
and transferrin-loaded magnetic nanoliposomes
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Tumor distribution of artemisinin, transferrin, and 
magnetic iron oxide
The concentration of  artemisinin, transferrin and 
magnetic iron oxide in the plasma and tumors at 2 h 
after treatment is shown in Figure 4a and b. The plasma 
stability of  artemisinin, transferrin, and magnetic 
iron oxide in the loaded form without an external 
magnetic force was significantly higher than those of  
free form. When compared to the free artemisinin 
and transferrin, the i.v administration of  artemisinin 
and transferrin‑loaded magnetic nanoliposomes 
followed using the magnetic field approximately 
produced 10‑ and 5.5‑fold higher levels of  artemisinin 
and transferrin in the tumors, respectively [Figure 4b]. 
Specifically, administration of  magnetic artemisinin 
and transferrin nanoliposomes followed using the 
magnetic field produced about 4‑and 3.8‑fold higher 
concentrations of  artemisinin and transferrin in the 
tumors, respectively, compared to magnetic artemisinin 
and transferrin nanoliposomes without magnetic field 
application [Figure 4b].

Suppressive effects on primary tumor growth
All combined artemisinin and transferrin preparations 
could significantly suppress primary tumor growth 
compared to the control group [Figure 5]. At 15 days after 
treatment, the artemisinin and transferrin‑loaded magnetic 
nanoliposomes combined with an external magnetic force 
not only completely suppressed the growth of  primary 
tumor but also reduced the tumor volume in tumorized 
mice [Figure 5]. In the presence of  an external magnetic 
force, a significant difference was observed between 
antitumor effects of  magnetic artemisinin and transferrin 
nanoliposomes and other examined groups (P < 0.01).

However, there was no significance in the effects of  
free artemisinin, transferrin and magnetic iron oxide 
with and without external magnetic force [Figure 5]. 
Altogether, the results indicate that the magnetic force 
significantly increased the therapeutic efficiency of  
magnetic nanoliposomal artemisinin and transferrin.

Histologic examination
Histologic examination of  primary tumors at 15 days 
after treatment with magnetic artemisinin and transferrin 
nanoliposomes under external magnetic force revealed a 
significant apoptosis rates in the tumor cells [Figure 6]. 
Fifteen days after treatment, the central region of  the 
tumor mass treated with artemisinin and transferrin‑loaded 
magnetic nanoliposomes under the magnetic force 
was found with many apoptotic cells and some viable 
tumor cells [Figure 6]. The mean apoptosis rates of  
breast cancer cells for mice treated with artemisinin and 
transferrin‑loaded magnetic nanoliposomes in the presence 
of  magnetic force were higher than those of  other groups.

DISCUSSION

Artemisinin is a sesquiterpene lactone and phytochemical 
found naturally in A. annua L.[1] Evidence for artemisinin’s 
benefit was strongest for anti‑malaria, anti‑oxidative, 
anti‑inflammatory, and anti‑cancer effects.[4,5] It is reported 
that the anti‑cancer effect of  artemisinin in the presence of  
iron sources such as transferrin was increased several fold.[3]

The use of  tagged and nanoparticulate forms of  
artemisinin for cancer therapy has been investigated.[20,21] 
However, the main problem associated with the application 
of  such artemisinin formulations is insufficient delivery to 
the target site.[22]

In previous study, we prepared magnetic nanoliposomes 
containing artemisinin and transferrin with acceptable 
size homogeneity, polydispersity index, as well as the 
stability in pH 7.4 citrate‑phosphate buffers within 12 h at 
37°C.[6] Moreover, the in vitro studies showed that prepared 
nanoliposomes in the presence of  a magnetic field could 
increase MCF‑7 and MDA‑MB‑231 cells apoptosis, so that 
after 12 h application of  magnetic force the majority of  
MCF‑7 and MDA‑MB‑231 cells easily eliminated.[6]

In the present study, in vivo anticancer efficiency 
of  ar temisinin and transferrin‑loaded magnetic 

Figure 4: The artemisinin, transferrin and magnetic iron oxide concentrations in the plasma (a) and tumors (b) of treated mice. *Significant 
difference between treated group 1 versus control and treated groups 2, 3 and 4 (P < 0.01); **Significant difference between treated group 5 
versus control and treated groups 2, 3 and 4 (P < 0.01)

a b
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nanoliposomes against breast tumor in BALB/c mice 
model was evaluated.

The results showed that the application of  an external 
magnetic force for 2 h and elicited the highest artemisinin and 
transferrin concentration in the tumor [Figure 3b]. Moreover, 
our data showed that the antitumor effect of  artemisinin and 
transferrin‑loaded magnetic nanoliposomes was greater than 
those of  free artemisinin and transferrin treatments.

In similar studies showed that magnetic nanoliposomes 
loaded with doxorubicin or adriamycin were tailored to 
target cancer cells, and the application of  a magnetic field 
could increase their concentration in the tumors.[18,23]

Some hypotheses, including increasing the delivery and 
penetration of  mentioned drugs into cancer cells, may 
explain the mechanism of  the enhanced anticancer 
activities of  these liposomal formulations.[24,25]

Magnetic artemisinin and transferrin nanoliposomes 
alone (without magnetic force) elicited slightly higher 
levels of  artemisinin and transferrin in the plasma than free 
artemisinin and transferrin. In this case, it has been reported 
that encapsulating of  drugs in nanocarriers could increase 
their stability in the bloodstream as well as enhanced their 
bioactivity.[26,27]

In the present study, histologic examination revealed 
high apoptosis rates in the breast cancer cells treated by 
artemisinin and transferrin‑loaded magnetic nanoliposomes 
in the presence of  an external magnetic force. These results 
showed that prepared nanoliposomes have acceptable 
performance, because it is reported that the survival 
rates of  cancer patients was related to the percentage of  
apoptotic cancer cells as well as higher concentrations of  
antitumor agents in the location of  tumors.[28,29]

No significant difference was observed between tumor 
volumes, and apoptotic cells rate groups treated with 
control liposomes (without artemisinin and transferrin) 
and PBS. Moreover, our results indicate that systemic 
chemotherapy with artemisinin and transferrin‑loaded 
magnetic nanoliposomes and an external magnetic force 
could reduce tumor volume in the treated mice. This 
finding is consistent with previous studies, which showed 
that targeted drug delivery to the tumors could enhance 
drug performance.[30,31]

CONCLUSION

In the presence of  a magnetic force, we successfully 
investigate the in vivo anti‑breast cancer activity of  
a r temis in in  and  t rans fe r r in ‑ loaded  magnet i c 
nanoliposomes.

Altogether, in the presence of  an external magnetic 
field, the systemic chemotherapy with magnetic 
nanoliposomes containing artemisinin and transferrin 
could effectively reduce the breast tumor mass in 
the treated mice. This is the first report regarding to 
breast cancer tumor targeted therapy by artemisinin 
and transferrin‑loaded magnetic nanoliposomes and 
more research about efficacy of  this formulation will 
be evaluated in future investigations.

Figure 5: Antitumor effects of artemisinin, transferrin and magnetic 
iron oxide in the free and loaded forms as well as in the presence or 
absence of an external magnetic force. *Significant difference between 
treated groups 2 and 3 versus control and treated group 1 (P < 0.01); 
**Significant difference between treated group 4 versus treated groups 
2 and 3 (P < 0.01); ***Significant difference between treated group 5 
versus other groups (P < 0.01)

Figure 6: TdT mediated dUTP Nick End Labeling staining of breast 
cancer cells. The arrows show apoptotic cells. (a) Control group, 
(b) treated group with empty magnetic nanoliposomes (without 
artemisinin and transferrin), (c) treated group with free artemisinin, 
transferrin and magnetic iron oxide in the presence of an external 
magnetic force, (d) treated group with free artemisinin, transferrin and 
magnetic iron oxide in the absence of an external magnetic force, 
(e) treated group with artemisinin and transferrin-loaded magnetic 
nanoliposomes in the absence of an external magnetic force, and 
(f) treated group with artemisinin and transferrin-loaded magnetic 
nanoliposomes in the presence of an external magnetic force

a b

c d

e f
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