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INTRODUCTION

Aluminium, a highly neurotoxic metal, is considered to 
be involved in the pathogenesis of  neurodegenerative 
disorders like Alzheimer’s disease (AD)[1‑3] and Parkinson’s 
disease.[4] Experimental animals, exposed to aluminium 
have developed AD‑like conditions, characterized by 
elevated levels of  amyloid beta (Aβ) protein and amyloid 
precursor protein (APP),[5,6] mitochondrial dysfunction, 
depletion of  ATP,[7,8] induction of  lipid peroxidation 
and lipid dystrophy,[9,10] accelerated production of  
phosphorylated tau,[11] impairment of  cholinergic 

projections[12] and promotion of  apoptotic neuronal 
death.[13,14] Thus, aluminium chloride (AlCl3)‑induced 
cognitive dysfunction model has been widely used for 
testing drugs against AD.[15‑17]

Cur rently approved treatments for AD target 
neurotransmitter systems and only provide modest 
improvement in cognitive impairment. Thus, it is 
necessary to develop effective medications that go 
beyond acetylcholinesterase (AChE) inhibitors and 
N‑methyl‑D‑aspartate antagonist. Several studies have 
demonstrated that hypercholesterolemia could cause 
dementia and Aβ42 deposition in hippocampal region.[18] 
Hypercholesterolemia is an outcome of  sedentary life‑style 
resulting in obesity and lipid dystrophy. Traditionally, in 
Indian medical practice of  Ayurveda, sesame oil from the 
seeds of  Sesamum indicum Linn. (Pedaliaceae) has been used 
to correct central nervous system disorders and insomnia.[19] 
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Sesamol (SML), an agent obtained from sesame oil, edible 
oil, is found to reduce cholesterol and triglyceride levels 
in acute and chronic models of  hyperlipidemia.[20] It is 
also reported to have antioxidant, neuro‑protective,[21] 
anti‑inflammatory[22] and hepatoprotective[23] activities. 
Although, all these actions of  SML are beneficial to 
overcome the condition of  dementia, SML has not been 
investigated for its behavioral effects in chronic models of  
dementia. In view of  this, the present study was designed 
to investigate the effect of  SML, a lipid lowering agent in 
AlCl3‑mediated behavioral and biochemical changes in rats.

MATERIALS AND METHODS

Animals
Male Wistar rats, weighing 200–250 g (90 days old) 
procured from Central Animal Research Facility of  Manipal 
University, Manipal were used. Animals were acclimatized 
to laboratory conditions for 7 days before the experiment 
and they were maintained under controlled conditions of  
temperature (23°C ± 2°C), humidity (50% ±5%). The 
animals were kept under standard conditions of  12 h 
light/dark cycle in sanitized polypropylene cages containing 
sterile paddy husk as bedding with free access to food and 
water ad libitum. The experimental protocol was approved 
by the Institutional Animal Ethics Committee, Kasturba 
Medical College, Manipal [IAEC/KMC/73/2012] and was 
carried out in accordance with the guidelines provided by 
the Committee for the Purpose of  Control and Supervision 
of  Experiments on Animals, Government of  India.

Drugs and treatment schedule
Aluminium chloride (Spectrochem Pvt Limited, India), 
SML (Sigma‑Aldrich Co, St. Louis, MO, USA) and 
rivastigmine (RIV) (Dr. Reddy’s Laboratories, Hyderabad, 
India) solutions were made freshly on each day for 
administration. AlCl3 was dissolved in distilled water and 
administered orally once daily at a dose of  175 mg/kg from 
day 6 onwards (24 h after the completion of  retention trial 
on day 5) for 60 days. This dosing regimen for inducing 
dementia using AlCl3 was determined according to the 
previous reports and the high rate of  induction and low 
mortality, which was evident in the pilot study conducted. 
SML and RIV, at various doses, were administered 45 min 
before administration of  AlCl3 orally after suspending 
them in 0.5% sodium carboxy methyl cellulose (CMC) 
in distilled water for 60 days from day 6. On the basis of  
escape latency time (ELT) on day 5, animals were divided 
into six groups (n = 8). The groups were as follows:
Group 1:  Nor ma l  cont ro l  ‑  Rece ived  d i s t i l l ed 

water (5 ml/kg p.o.).
Group 2:  Vehicle control ‑ Receives 0.5% CMC (5 ml/kg p.o.).
Group 3: AlCl3 (175 mg/kg p.o.).

Group 4: RIV (1 mg/kg p.o.) + AlCl3 (175 mg/kg p.o.).
Group 5: SML (10 mg/kg p.o.) + AlCl3 (175 mg/kg p.o.).
Group 6: SML (20 mg/kg p.o.) + AlCl3 (175 mg/kg p.o.).

The doses of  the standard drug RIV (1 mg/kg) and the test 
drug SML (10 mg/kg and 20 mg/kg) were chosen based 
on the previous literature reports.[24‑27] Body weight of  the 
animals was taken on a daily basis before the treatments.

Spatial memory assessment using Morris water maze
To investigate the spatial learning and memory abilities of  
the experimental rats, Morris water maze task was performed 
as described by Morris[28] with minor modifications.[29] It 
consisted of  a circular tank of  150 cm diameter and 40 cm 
height. The pool was divided into North‑East, South‑East, 
South‑West and North‑West (NW) quadrants. In the NW 
quadrant a hidden escape platform (10 cm diameter), was 
placed 2 cm below the water surface.

All rats were trained to find the escape platform. Animals 
were given four trials per day for 4 consecutive days. 
Animals were kept on the platform for 30 s and then 
removed. The rats that could not reach the platform in 
20 s on the 4th trial‑day were excluded from the study. On 
the probe day (day 5), the hidden platform was removed, 
and probe trial was performed with a cut off  time of  
60 s. All the animals were exposed to one retention trial on 
day 25, 45 and 65 to evaluate the memory consolidation. 
Data were acquired through a video camera connected to 
a computerized tracking system (Any Maze, Ugo Basile, 
Italy) fixed above the centre of  the pool.

Dissection and tissue preparation
On day 65, immediately after the retention trial, the 
animals were sacrificed by decapitation. Brains were 
rapidly removed, hippocampus and frontal cortex were 
dissected according to the method described by Glowinski 
and Iverson.[30] A 10% w/v homogenate of  samples 
was prepared by homogenizing with ice‑cooled 0.1 M 
phosphate buffer potential of  Hydrogen (pH) 7.4 using 
an ultra Turrax T25 homogenizer at a speed of  9500 rpm 
thrice at an interval of  few seconds. The homogenates 
were then centrifuged at 15,000 rpm at 4°C for 15 min. 
Supernatant was collected and used for biochemical 
estimations.

Estimation of acetylcholinesterase activity
In the supernatant, AChE activity was measured by Ellman 
method using acetylthiocholine iodide as a substrate.[31] To 
a reaction mixture containing phosphate buffer (2.8 ml, 
pH 8), acetylthiocholine iodide (0.05 ml) and 0.05 ml 
of  5,5’‑dithio‑bis‑2‑nitrobenzoic acid (DTNB) (Ellman 
reagent), 0.1 ml of  the supernatant was added. The change 
in absorbance was measured for 4 min at 60 s interval at 
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412 nm using ultraviolet–visible spectrophotometer and 
the change in absorbance per minute was calculated. The 
results were expressed as micromoles of  acetylthiocholine 
iodide hydrolyzed per min per mg protein.

BIOCHEMICAL EVALUATION

At the end of  the experimental period, animals were mildly 
anaesthetized with diethyl ether and the blood samples were 
collected by retro‑orbital sinus puncture into microcentrifuge 
tubes. The tubes were then centrifuged at 10,000 rpm 
for 10 min at 20°C. After centrifugation, the serum was 
separated at once, divided into aliquots and stored at −20°C 
until they were used for biochemical analysis.

Collected serum samples were analyzed colorimetrically for 
triglycerides (glycerophosphate‑oxidase‑peroxidase (POD) 
method), total cholesterol (cholesterol oxidase‑POD 
method), low‑density lipoprotein (LDL) and high‑density 
lipoprotein (HDL) levels by end point method as per the 
manufacturer’s instructions with the help of  diagnostic 
kits (Aspen laboratories, Mumbai) using Enzyme Linked 
Immuno Sorbent Assay (ELISA) plate reader.

Estimation of lipid peroxidation and nitrite level
Estimation of nitrite level
Nitrite level in hippocampus and frontal cortex homogenate 
was measured by Griess reaction.[32] The extent of  lipid 
peroxidation in hippocampus and frontal cortex was 
quantitatively determined by the method described by 
Konings and Drijver.[33]

Estimation of antioxidant enzymes
The catalase activity was determined by the method of  Aebi 
et al., 1984[34] and glutathione (GSH) activity based upon the 
reaction between DTNB and sulfhydryl groups of  GSH.[35]

Tumor necrosis factor‑α Estimation
Level of  tumor necrosis factor (TNF‑α) in the supernatant 
was estimated by rat TNF‑α kit as per the experimental 
protocol given by Invitrogen Corporation, USA. It involves 
a solid phase sandwich ELISA. The level of  TNF‑α was 
expressed as pg/mg of  protein.

Estimation of total protein
Total protein was estimated in all tissue samples using 
Pierce® BCA Protein Assay Kit as per the experimental 
protocol given by Thermo Scientific, USA. Bovine serum 
albumin was used as a standard.

Statistical analysis
All the data are expressed as mean ± standard error of  
the mean. Results were analyzed by one‑way analysis of  
variance , followed by Tukey’s post‑hoc test using Graph 

Pad Prism version 5.0 software. P <0.05 was considered 
as statistically significant.

RESULTS

Body weight
After 60 days, AlCl3 exposure and other treatment groups 
did not show a significant effect on body weight [Table 1].

Spatial memory assessment using Morris water maze
Time to reach hidden platform (Escape latency)
Aluminium chloride intoxication resulted in cognitive 
impairment as evidenced by significant increase in ELT 
during probe trials. On day 25, RIV and SML (20 mg/kg) 
produced a significant decrease in ELT when compared 
to AlCl3‑treated group. On day, 45 and day 65, all the 
treatment groups significantly improved the cognitive 
performance (i.e. decreased ELT) of  animals relative to 
AlCl3‑treated group [Figure 1a].

North‑West latency
Following 60 days of  AlCl3 administration, dementia was 
observed in rats as shown by the significant (P < 0.05) 
increase in the latency to find the target quadrant (NW). 
In RIV and SML (10 mg/kg and 20 mg/kg) groups, 
the latency to find the target quadrant was shortened 
significantly [Figure 1b].

Percentage time spent in target quadrant 
(north‑west)
During the probe trials on day 25, 45 and 65, aluminium 
treated animals were found to spent significantly less time 
in the target quadrant (NW) as compared to control group. 
All the treatment groups significantly increased the time 
spent in the target quadrant relative to aluminium treated 
group during probe trial. SML (20 mg/kg) was found to 
have an activity comparable to RIV [Figure 1c].

Total zone entries
Aluminium treated group showed a significant decrease 
in total zone transitions on subsequent days of  testing as 

Table 1: Effect of AlCl3 and AlCl3+ treatments 
(RIV, SML) on the body weight of animals before 
and after treatment
Treatment Day 1 Day 65
Control 227.6±2.75 294.0±9.80
Vehicle control 224.8±3.12 295.7±6.56
AlCl3 230.1±3.60 267.3±6.93
AlCl3+RIV (1 mg/kg) 230.0±3.65 292.0±7.26
AlCl3+SML (10 mg/kg) 222.3±2.98 283.3±5.58
AlCl3+SML (20 mg/kg) 222.3±3.80 287.8±6.24

Data presented as mean±SEM (n=8). P<0.05 as compared to control group and P<0.05 
as compared to AlCl3 treated group. SEM: Standard error of mean; RIV: Rivastigmine; 
SML: Sesamol; AlCl3: Aluminium chloride
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compared to control group. RIV and SML significantly 
increased total zone transitions of  animals as compared 
to AlCl3 treated group [Figure 1d].

Acetylcholinesterase activity
Chronic AlCl3 exposure significantly decreased 
AChE activity in the frontal cortex (P < 0.05) and 
hippocampus (P < 0.05) of  rats as compared to 
normal control group [Figure 2a and b]. RIV also 
significantly (P < 0.05) decreased cholinesterase activity 
compared to control group in both hippocampus 
and frontal cortex. SML (10 mg/kg and 20 mg/kg) 
significantly reversed the effect of  AlCl3 on AChE 
activity.

Effect of treatments on lipid profile
Chronic administration of  AlCl3 for 60 days caused 
significant (P < 0.05) reduction in serum HDL 

levels [Figure 3a], increase in LDL levels [Figure 3b], total 
cholesterol [Figure 3c], triglycerides [Figure 3d] as compared 
to control group. Interestingly RIV significantly (P < 0.05) 
prevented the rise in LDL levels. Treatment with SML 
prevented the rise in total cholesterol, triglycerides and 
LDL levels and increased HDL levels as compared to AlCl3 
treated animals.

Estimation of lipid peroxidation and nitrite level
Estimation of malondialdehyde level
T h e  m a l o n d i a l d ehyd e  (M DA )  l e ve l s  i n  t h e 
hippocampus [Figure 4a] and frontal cortex [Figure 5a] 
of  aluminium treated rats showed a threefold increase 
as compared to control group. The elevated MDA levels 
were significantly reversed by RIV and SML. SML at 
10 mg/kg and 20 mg/kg dose level showed a better 
reduction of  MDA levels than RIV in the hippocampus 
region.

Figure 1: Effect of aluminium chloride (AlCl3) and AlCl3 + treatments (Rivastigmine, Sesamol) on (a) ELT time (latency to reach platform) 
(b) North-West (NW) latency (c) Percent time spent in target quadrant (NW). (d) Total zone entries and during retention trials before (day 5) and 
after (day 25, 45 and 65) treatment. Data presented as mean ± standard error of the mean (n = 8). *P < 0.05 as compared to control group and 
aP < 0.05 as compared to AlCl3 treated group

dc

ba
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Estimation of nitrite level
Chronic exposure of  animals to AlCl3 caused a significant 
elevation in nitrite levels in the hippocampus [Figure 4b] 
and frontal cortex [Figure 5b] as compared to control 
group of  animals. RIV and SML (10 and 20 mg/kg) 
treatments significantly prevented the rise in levels of  
nitrite in both frontal cortex and hippocampus. In this 
case, SML (20 mg/kg) was found to reduce nitrite levels 
comparable to that seen in the control group.

Estimation of antioxidant enzymes
Catalase and glutathione activity
The hippocampus and frontal cortex of  the AlCl3‑treated 
rats were observed to have significant (P < 0.05) reduction 
in catalase [Figures 4d and 5d] and reduced GSH activity 
as compared to control animals [Figures 4c and 5c]. 
RIV (1 mg/kg) and SML (10 mg/kg, 20 mg/kg) enhanced 
the catalase, and GSH levels significantly as compared to 
AlCl3 treated group.

Figure 2: Effect of aluminium chloride (AlCl3) and AlCl3 + treatments (Rivastigmine, Sesamol) on acetylcholinesterase activity in (a) hippocampus 
(b) frontal cortex. Data presented as mean ± standard error of the mean (n = 8). *P < 0.05 as compared to control group and aP < 0.05 as 
compared to AlCl3 treated group

ba

Figure 3: Effect of aluminium chloride (AlCl3) and AlCl3 + treatments (Rivastigmine, Sesamol) on (a) High-density lipoprotein (b) Low-density 
lipoprotein (c) Total cholesterol (d) Triglycerides. Data presented as mean ± standard error of the mean (n = 8). *P < 0.05 as compared to control 
group and aP < 0.05 as compared to AlCl3 treated group
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Estimation of tumor necrosis factor‑α in 
hippocampus
Tumor necrosis factor‑α levels were significantly 
(P < 0.05) increased (threefold) in the hippocampus 

of  AlCl3 treated animals as compared to vehicle group. 
Treatment with RIV (P < 0.05), SML (20 mg/kg) 
significantly (P < 0.05) inhibited this rise in TNF‑α 
levels [Figure 6].

Figure 4: Effect of aluminium chloride (AlCl3) and AlCl3 + treatments (Rivastigmine, Sesamol) on hippocampus (a) malondialdehyde (b) nitrite 
level (c) glutathione level (d) catalase activity

dc

ba

Figure 5: Effect of aluminium chloride (AlCl3) and AlCl3 + treatments (Rivastigmine, Sesamol) on frontal cortex (a) Malondialdehyde (b) Nitrite 
level (c) Glutathione level (d) Catalase activity. Data presented as mean ± standard error of the mean (n = 8). *P < 0.05 as compared to control 
group and aP < 0.05 as compared to AlCl3 treated group
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DISCUSSION

The study investigates the ameliorative effect of  the 
lipid‑lowering drug, SML, on AlCl3‑induced behavioral and 
biochemical changes in rodents. Aluminium was shown to 
accumulate in higher quantities in hippocampal and cortex 
regions, which are the sites of  memory.[36] Spatial memory 
tasks are highly sensitive to hippocampus and frontal 
cortex[37] which is severely affected in neurodegenerative 
conditions such as AD.

Chronic aluminium exposure in animals was reported 
to cause cognitive decline.[38,39] Cognitive dysfunction is 
evident from decreased activity of  experimental animals 
in Morris water maze,[24] radial arm maze[38] and passive 
avoidance task.[40] In the present study, the behavioral 
changes showed by aluminium exposed rats were 
inconsistent with previous reports. In Morris water maze 
test, aluminium exposure resulted in a significant decrease 
in spatial memory as indicated by increased ELT (time 
required to reach platform), NW latency (time required to 
reach target quadrant) and decreased percentage time in 
the NW zone and total zone entries during the probe trial. 
The treatment with SML and RIV reversed the memory 
deficit caused by AlCl3. This suggests the beneficial effects 
of  SML in correcting memory deficit associated with 
aluminium exposure.

Cholinergic system in the brain plays a major role in 
modulating learning and memory. Reduction in AChE 
activity and acetylcholine levels in hippocampus and cortex 
have been correlated with loss of  cognitive function in AD 
patients.[41] Long‑term potentiation in the hippocampal 
CA1 pyramidal neurons is modulated by AChE.[15] 
Moreover, it is essential for survival and growth of  cells.[42] 
In experimental animals, aluminium has been shown to 
decrease AChE activity.[43] It shows a biphasic response 
on AChE activity, with an initial increase in the activity 
of  the enzyme followed by a marked decrease. Formation 
of  irreversible aluminium complex with high affinity 
toward the anionic site of  enzyme and slow accumulation 

of  aluminium in the brain has been attributed for such 
biphasic response.[44,45] This explains the significant 
reduction in AChE activity in both hippocampus and 
cortex observed in our study after chronic AlCl3 treatment. 
The toxic effect of  aluminium may be attributed to 
reduced choline uptake,[46] erosion of  cholinergic terminals 
in cortex and hippocampus,[47] and reduced choline acetyl 
transferase.[48] RIV, the standard AchE inhibitor showed 
further decrease in AChE activity thereby sustaining the 
action of  the remaining acetylcholine from cholinergic 
neurons. SML was found to increase the AChE levels 
in aluminium‑exposed rats; this may be attributed to the 
ability of  SML to re‑establish the acetylcholine release, 
thus protecting cholinergic neurons.

Apart from cholinergic deficit leading to memory 
impairment, effect of  dyslipidemia on behavioral changes 
has been studied. In AD patients, elevation in the levels 
of  total serum cholesterol and LDL‑associated cholesterol 
has been implicated.[49] An increase in the membrane 
cholesterol enhances the lipid raft area, and the APP present 
in the rafts gets into contact with β‑secretase very easily 
leading to increased Aβ production.[18] Aluminium through 
its dyslipidemic property could have contributed to a strong 
lipid membrane rafts in the brain neuronal membrane 
leading to AD like syndrome in rats. The dyslipidemia due 
to aluminium treatment (elevated levels of  total cholesterol, 
LDL, triglycerides and decreased HDL levels) is largely 
attributed to the accumulation of  aluminium in liver causing 
alteration in lipid metabolism.[50] In our previous study, 
SML was found to reduce both serum triacylglycerol and 
cholesterol levels.[19] In the present study, chronic treatment 
using SML was able to bring down the raised cholesterol, 
LDL, and triglycerides levels due to aluminium exposure. It 
also increased the HDL (good cholesterol) level comparable 
to control.

Oxidative stress and neuro‑inflammation are involved 
in the pathology of  neurodegenerative disorders.[51] 
Lipids are highly vulnerable to oxidative stress. The 
polyunsaturated fatty acids present in brain get attacked 
by the free radicals leading to the production of  toxic 
aldehydes as 4‑hydroxynonenal and acrolein which in 
turn, lead to conformational changes of  proteins. Studies 
have suggested the possible involvement of  Aβ induced 
lipid peroxidation in brain generating free radicals and 
reactive aldehydes resulting in neurodegeneration.[52,53] 
Nitric oxide (NO), a signaling molecule regulates many 
physiological functions in the body. It also acts as a free 
radical to induce nitrergic stress. The nitrergic stress in 
turn activates the mitochondrial pathway of  apoptosis 
through up regulation of  p53,[54] cytochrome c release[55] 
and through p38 mitogen‑activated protein kinase 
pathway[56] leading to neuronal death. In our study, 

Figure 6: Effect of aluminium chloride (AlCl3) and AlCl3 + treatments 
(Rivastigmine, Sesamol) on tumor necrosis factor-α level in the 
hippocampus of rats. Data presented as mean ± standard error of the 
mean (n = 8). *P < 0.05 as compared to control group and aP < 0.05 as 
compared to AlCl3 treated group
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we observed a significant increase in nitrite and MDA 
levels in aluminium treated group in accordance with 
the previous reports.[57] Further, aluminium treated rats 
showed a decrease in antioxidant system viz., catalase 
and GSH levels indicating considerable oxidative stress 
caused by the toxicant. Both RIV and SML treatment 
normalized the altered levels of  nitrite, MDA levels and 
antioxidant enzyme like catalase, GSH. This may be due 
to the antioxidant effect of  SML[58] and inhibition of  NO 
synthase.[21,22] Ameliorative effect of  SML on oxidative 
stress may be considered as one of  the approaches to 
correct aluminium mediated neurotoxicity.

Accumulation of  abnormal protein aggregates like Aβ42 
and free radicals (viz., nitrite, reactive oxygen species, 
reactive nitrogen species) may trigger cellular stress and 
neuroinflammation by activation of  the brain’s innate 
immune system involving microglia and astrocytes. 
Activation of  these immune cells results in the release of  
inflammatory mediators such as TNF‑α, interferon‑α, 
Interleukin‑6 resulting in neurodegeneration.[59,60] It has 
been observed that aluminium exposure has resulted in 
elevated TNF‑α, a key cytokine which stimulates microglia 
to release glutamate causing excitotoxicity.[61,62] Similar to 
this we also observed a significant increase in TNF‑α level 
in hippocampus following chronic aluminium exposure. 
This rise in TNF‑α was counteracted by SML indicating 
its role in preventing neuroinflammation.

CONCLUSION

Sesamol treatment demonstrates a protective effect against 
AlCl3‑induced cognitive dysfunction in rats. The aluminium 
mediated biochemical changes were reversed, where SML 
enhanced AChE level in hippocampus and cortex regions 
through correcting hyperlipidemia, reducing oxidative 
stress, NO and TNF‑α level. Further studies are awaited 
to establish the role of  SML as a potential candidate to 
control neuronal disturbances.
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