Anti-arthritic activity of Fu-Fang-Lu-Jiao-Shuang on collagen-induced arthritis in Balb/c mice and its underlying mechanisms

Articles

Abstract
Pharmacognosy Magazine,2015,11,42,242-249.
Published:March 2015
Type:Original Article
Authors:
Author(s) affiliations:

Yanyan Wang1, Weiguang Sun2, Laxia Chen1, Xin Xu2, Yunxia Wu2, Jinwen Zhang3, Yonghui Zhang2
1 Department of Pharmacology, Yichang Central People's Hospital, Sanxia University, Yichang, China
2 School of Pharmacy, Tongji Medical College, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Huazhong University of Science and Technology, Wuhan, China
3 Department of Pharmacology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

Abstract:

Background: Rheumatoid arthritis (RA) is a common, autoimmune disorder characterized by progressive multiple joint destruction, deformity, disability and premature death in most patients. Fu-Fang-Lu-Jiao-Shuang (FFLJS) is an effective traditional Chinese medicine, which has long been used clinically to treat RA patients. Objective: The objective of this study is aimed to evaluate the anti-rheumatic effects of FFLJS on collagen induced arthritis (CIA) model, as well as the underlying mechanisms, which have not previously been explored. Materials and Methods: CIA was induced by immunization with type II collagen (CII) in male Balb/c mice. The mice in the onset of arthritis were treated daily with FFLJS (125 or 500 mg/kg) or 1% carboxymethyl cellulose-Na for 28 days. Paw thickness and arthritic score were evaluated to confirm the anti-arthritic effect of FFLJS on CIA in mice. Levels of anti-CII antibody, proinflammatory cytokines interleukin-1 (IL-1) β, IL-17, and tumor necrosis factor-α (TNF-α) as well as prostaglandin E-2 (PGE-2) in serum and histological changes in the ankle joint were also analyzed. In addition, expressions of matrix metalloproteinases-1 (MMP-1), MMP-3 and tissue inhibitors of matrix metalloproteases-1 (TIMP-1) in synovial tissue were also detected to further study the molecular mechanism of the anti-arthritic effects of FFLJS. Results: During therapeutic treatment, FFLJS significantly reduced paw thickness and arthritic score in CIA mice, decreased the amounts of TNF-α, IL-1 β, IL-17, PGE-2 and anti-CII antibody in serum. In addition, FFLJS treatment could prevent the bone destruction by reducing the expression of MMP-1 and MMP-3, increasing the expression of TIMP-1 in synovial tissue of CIA mice. Conclusion: These findings offer the convincing evidence for the first time that the anti-rheumatic effects of FFLJS might be related to down-regulation of TNF-α, IL-1 β, IL-17 and PGE-2 levels for acute arthritis, and regulation of MMP-1, MMP-3 and TIMP-1 protein expression for chronic arthritis.

PDF
Keywords