Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2022  |  Volume : 18  |  Issue : 78  |  Page : 386-392

Natural anti-hepatitis B virus flavones isolated from schimperi vatke growing in Saudi Arabia: Cell culture and molecular docking study

1 Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
2 Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan

Correspondence Address:
Mohammad K Parvez
Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451
Saudi Arabia
Sarfaraz Ahmed
Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451
Saudi Arabia
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/pm.pm_600_21

Rights and Permissions

Background: Stachys schimperi Vatke has been previously reported for its analgesic, antipyretic, antioxidant, antimicrobial and cardioprotective properties. Objectives: Phytochemical analysis and assessment of anti-hepatitis B virus (anti-HBV) activity of S. schimperi. Materials and Methods: Surface extraction was performed to isolate the phytoconstituents using chromatographic techniques, including HPLC. The isolates were identified by a 1D and 2D NMR spectroscopic data. Further, the isolates were tested for cytotoxicity using an MTT assay. Non-cytotoxic doses of the isolates were assessed for their antiviral potential on cultured HepG2.2.15 cells. To rationalize the plausible mechanisms of the tested anti-HBV active compounds, molecular docking studies were carried out using HBV polymerase (Pol) enzyme. Results: The NMR data proved the structure of isolates as artemetin [5-hydroxy, 3' 3′,4′'6,7-penta methoxy flavone] (1), chrysosplenetin [5,4′-dihydroxy, 3'3′' 6,7-tetra methoxy flavone] (2) and calycopterin [5,4′-dihydroxy, 3' 6,7'8-tetra methoxy flavone] (3). Notably, this is the first report on the isolation of these three compounds from S. schimperi as well as artemetin and calycopterin from the genus Stachys. Further antiviral assessment of the non-cytotoxic dose showed marked inhibitions of HBV antigens (HBsAg/HBeAg) by artemetin (52.28%/46.52%) and calycopterin (61.24%/57.26%) in HepG2.2.15 cells. Chrysosplenetin, however, did not show any anti-HBV activity. Artemetin and calycopterin exhibited anti-HBV activity, possibly through inhibition of HBV-Pol as revealed by molecular docking. Conclusion: We report the identification of anti-HBV active flavones artemetin and Calycopterin from S. shimperi. Our data strongly warrant further molecular and pharmacological studies on artemetin and calycopterin toward developing potential anti-HBV therapeutics.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded22    
    Comments [Add]    

Recommend this journal