Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2022  |  Volume : 18  |  Issue : 77  |  Page : 10-21

Evaluation of cardioprotective potential of isolated swerchirin against the isoproterenol-induced cardiotoxicity in wistar albino rats

1 Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
2 Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India

Correspondence Address:
Syed Ehtaishamul Haque
Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110 062
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/pm.pm_500_20

Rights and Permissions

Background: Cardiotoxicity is one of the emerging health-care issues worldwide and mortality due to this is increasing exponentially. Oxidative stress, myocardial inflammation, and damage to the cardiac membrane are major causative attributes for this toxicity. Isoproterenol (ISO)-induced cardiotoxicity is a well-established and accepted model to estimate innovative cardioprotective agents, as it exhibits several morphological and biochemical aberrations in the myocardium of rat that is comparable with those detected in clinical practice. Objectives: In the present study, we explored the cardioprotective effect of swerchirin (SW) extracted from Swertia chirayita in the ISO model. Materials and Methods: SW was isolated from S. chirayita, characterized by high-performance thin-layer chromatography-mass spectrometry, 1H-nuclear magnetic resonance (NMR), 13C-NMR, and high-performance liquid chromatography techniques. The in-vitro study was performed for 2,2-Diphenyl-1-picrylhydrazyl and nitric oxide scavenging activity to explore the antioxidant capacity. In silico study was performed to ascertain the binding affinity of SW with antioxidant enzymes. The in-vivo study was performed to explore the cardioprotective activity in the ISO-induced cardiotoxic model. Results: The in vitro studies showed the significant antioxidant potential of SW whereas the in silico study revealed its effective binding into the catalytic pocket domain of superoxide dismutase and catalase. The in vivo study showed a significant improvement in antioxidant enzymes and a reduction in serum glutamic-oxaloacetate transaminase and lipid profile. Further, SW also significantly reversed the histopathological aberrations in a dose-dependent manner. Conclusion: Findings of the study showed a significant cardioprotective effect of SW against ISO-induced cardiac damage.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded294    
    Comments [Add]    

Recommend this journal