In silico studies on the therapeutic potential of novel marker compounds isolated from chemically modified bioactive fraction from Curcuma longa (Non-carbonyl Curcuma longa)
Arshi Naqvi1, Reem A K. Al-Harbi2, Samah Ali3, Richa Malasoni4, Swati Gupta4, Anil Kumar Dwivedi4
1 Department of Chemistry, College of Science, Taibah University, Al-Madina Al-Munawwara, Saudi Arabia; Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India 2 Department of Chemistry, College of Science, Taibah University, Al-Madina Al-Munawwara, Saudi Arabia 3 Department of Chemistry, College of Science, Taibah University, Al-Madina Al-Munawwara, Saudi Arabia; Vitamins, The National Organization for Drug Control and Research, Al-Agouzah, Giza, Egypt 4 Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
Correspondence Address:
Arshi Naqvi Pharmaceutics Division, CSIR-Central Drug Research Institute, B1/10 Jankipuram Extension, Sitapur Road, Lucknow - 226 031, Uttar Pradesh
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/pm.pm_317_20
|
Background: Curcuma longa, a perennial herb, is a member of the Zingiberaceae (ginger) family is described to possess a broad spectrum of biological activities. Herbal medicament (HM) or curcuma oil is a bioactive standardized hexane-soluble fraction of C. longa and is established for its neuroprotective effect. HM was modified chemically to unfasten compounds containing carbonyl group in it resulting in a bioactive non-carbonyl C. longa (NCCL). Objectives: In the present study, novel marker compounds (A and B) have been successfully isolated from NCCL and their various in silico traits and interactions were studied. Materials and Methods: Marker compounds A and B were characterized utilizing various spectroscopic data (one-dimensional [1D]/2D Nuclear Magnetic Resonance (NMR), mass spectrometry, and infrared). Isolated compounds were subjected to in silico computational tools for predicting their drug-likeness, pharmacokinetic, pharmacodynamic properties. Results: Both compounds A and B flaunted drug-like properties by following the standard descriptors along with good in silico absorption. Conclusion: Novel marker compounds A and B were successfully isolated from NCCL and fully characterized utilizing spectroscopic techniques. Both the compounds displayed good drug-like properties.
|