Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2021  |  Volume : 17  |  Issue : 74  |  Page : 236-243

Identification of chemical constituents and inhibitory effect of Ficus deltoidea fraction against lipopolysaccharide-induced nuclear factor-kappa B inflammatory pathway in murine macrophage 264.7 cells

1 Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
2 Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
3 Centre for Drug Research, Universiti Sains Malaysia; School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
4 Department of Microbiology, Annamalai University, Chidambaram, Tamil Nadu, India
5 Muthayammal Centre for Advanced Research, Muthayammal College of Arts and Science, Affiliated to Periyar University, Namakkal; Scigen Research and Innovation Pvt. Ltd, Periyar Technology Business Incubator, Thanjavur, Tamil Nadu, India

Correspondence Address:
Rameshkumar Santhanam
Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/pm.pm_433_20

Rights and Permissions

Background: Ficus deltoidea Jack or locally known as Mas Cotek belongs to the family Moraceae is a conventionally used Malaysian native medicinal plant. Objectives: The aim is to determine the anti-inflammatory mechanism of various solvent fractions of F. deltoidea methanol extract against Lipopolysaccharide (LPS)-induced nuclear factor-kappa B (NF-κB) inflammatory pathway in murine macrophage 264.7 cells and to identify the chemical constituents present in the active fraction. Materials and Methods: The effect of crude methanolic extract and its fractions (hexane, chloroform, ethyl acetate, and butanol) on murine macrophages against LPS-induced pro-inflammatory cytokines (interleukin [IL]-Iβ, tumor necrosis factor alpha [TNF-α], and IL-6) and biomarkers were tested using enzyme-linked immunosorbent assay and immunoblot analysis. The chemical constituents present in the active fraction were identified using liquid chromatography mass spectrometry and liquid chromatography tandem mass spectrometry analysis. Results: The findings indicated that among all the fractions, the ethyl acetate fraction of F. deltoidea substantially inhibits the LPS-induced inflammatory mediators such as nitric oxide (NO) and pro-inflammatory cytokine production including TNF-α, IL-6, and IL-1 β in a dose-dependent manner. The expression of inducible NO synthase, NO synthase, and cyclooxygenase-2 were also effectively downregulated by the treatment of ethyl acetate fraction. Moreover, it also suppressed the expression of LPS-induced NF-κB translocation correlated with the inhibition of NF-κB (inhibitor of kappa B alpha) degradation. The presence of bioactive phenolics, especially flavonoids such as catechin, vitexin, dodecadienyl coumaric acid, (epi)-afzelechin-(epi)-catechin, genistein, and apigenin derivatives were identified in the ethyl acetate fraction of F. deltoidea. Conclusion: Overall, it has been recommended that the ethyl acetate fraction of F. deltoidea could be utilized as a potential natural anti-inflammatory agent.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded146    
    Comments [Add]    

Recommend this journal