Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2021  |  Volume : 17  |  Issue : 73  |  Page : 45-50

Dieckol attenuates cell proliferation in Molt-4 leukemia cells via modulation of JAK/STAT3 signaling pathway


1 Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province 250033, China
2 Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province 250033, China
3 Department of Biochemistry, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Velappanchavadi, Chennai, Tamil Nadu, India
4 Department of Biochemistry, Panimalar Medical College Hospital and Research Institute, Chennai, Tamil Nadu, India

Correspondence Address:
Juandong Wang
Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Street, Tianqiao District, Jinan City, Shandong Province, 250033
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_2_20

Rights and Permissions

Background: Leukemia is a cancer of the hematopoietic stem cells, which leads to an uncontrolled proliferation of leukocytes in blood. It is responsible for one of the most important cancer-associated deaths across the globe. Materials and Methods: In this study, we analyzed whether dieckol (DEK), a polyphenolic compound obtained from brown algae, can suppress cell proliferation via regulation of JAK/STAT3 signaling pathway in leukemia cell lines (Molt-4). Results: According to our results, DEK induced cytotoxicity, altered the cell morphology, caused nuclear damage, enhanced the formation of reactive oxygen species, decreased the production of mitochondrial membrane potential, reduced the levels of antioxidants (reduced glutathione, catalase, and superoxide dismutase), and augmented the level of thiobarbituric acid reactive substances in Molt-4 cell lines. Furthermore, STAT3 has been recognized as an important transcriptional mediator that controls cell proliferation. Thus, suppression of STAT3 transcription is a novel approach for the suppression of Molt-4 cell proliferation. In this study, DEK inhibited STAT3 translocation, thereby suppressing the increased expression of cyclin E1, PCNA, cyclin D1, and JAK1 in Molt-4 cell lines. Conclusion: In summary, DEK suppressed the cell proliferation of Molt-4 cells via inhibition of JAK/STAT3 signaling pathway.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1041    
    Printed14    
    Emailed0    
    PDF Downloaded183    
    Comments [Add]    
    Cited by others 1    

Recommend this journal