Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2021  |  Volume : 17  |  Issue : 5  |  Page : 15-20

Antihyperglycemic activity of Achyranthes aspera linn. leaves extract by modulation of β-cell functioning in streptozotocin-induced diabetic rats

1 Department of Pharmacology, Y.B. Chavan College of Pharmacy, Aurangabad, Maharashtra, India
2 Department of Pharmacology, JSPM's Rajarshi Shahu College of Pharmacy and Research, Pune, Maharashtra, India

Correspondence Address:
Hemant D Une
Department of Pharmacology, Y.B. Chavan College of Pharmacy, Aurangabad - 431 001, Maharashtra
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/pm.pm_296_20

Rights and Permissions

Objective: The objective of the study is to study the anti-hyperglycemic potential of Ethyl Acetate dissolved fraction of methanolic extract of Achyranthes aspera Linn. (EAAA) leaves on STZ induced diabetic rat model. Materials and Methods: Safety study of EAAA was carried out with different doses up to 2000 mg/kg. Hyperglycemia was developed in Sprague Dawley male (SD) rats by only one dose of streptozotocin 55 mg/kg in 0.1 M Citrate buffer by intraperitoneal route. Hyperglycemic rats were treated with EAAA 50,100mg/kg and Metformin 120 mg/kg body wt. Biological specifications such as glucose level in blood, insulin level in serum and glucose transporter (GLUT-2) protein expression were measured. In addition, histopathological study of pancreatic tissue was performed to check changes occurred in β-cell complex. Results: No mortality was observed during safety study. Weight of treated rats was found to be increased whereas glucose level in blood samples of EAAA treated rats were showed improvement as compare to control groups. The result shows up-regulation of serum insulin levels and small changes in the expression of GLUT-2 after 4-week treatment with the EAAA treatment. The presence of polyphenols in EAAA may have provoked ingestion of glucose by changing the glucose transporter. It has been identified by many researchers that herbal extracts which are rich in polyphenols are responsible for debilitating insulin resistance and thus restrain glucose uptake by expressing GLUT-2 in pancreatic cells of diabetic rats. Histological analysis demonstrated improvement in the structural decay of β-cells of pancreatic tissue. Conclusion: The results indicate the thinkable effect of EAAA in STZ-induced diabetic Rats.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded184    
    Comments [Add]    

Recommend this journal