Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2020  |  Volume : 16  |  Issue : 71  |  Page : 524-530

Honey as a solvent for the green extraction, analysis, and bioconversion of daidzin from Pueraria candollei var. mirifica root

1 Department of Industrial Pharmacy, School of Pharmacy, Walailak University, Fukuoka 812-8582, Japan
2 Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
3 Department of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University; Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology, National Research University-Khon Kaen University, Khon Kaen 40002, Thailand
4 Department of Pharmacognosy and Kampo, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan

Correspondence Address:
Gorawit Yusakul
School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat 80160
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/pm.pm_74_20

Rights and Permissions

Background: Honey has been widely used as a traditional vehicle of herbal medicines. Honey behaves as a natural deep eutectic solvent (NADES) containing β-glucosidase; therefore, it can be used for the extraction and bio-activation of the bioactive compounds of herbs. Objectives: This study aims to apply honey (H-NADES) and a sugar-based NADES (S-NADES) for the extraction, analysis, and bioconversion of daidzin from Pueraria candollei var. mirifica (PM) root. Materials and Methods: Various concentrations of H-NADES and S-NADES (water:sucrose:glucose: fructose, 18:3:18:22 by weight) were used as solvents for extraction. Indirect competitive enzyme-linked immunosorbent assay (icELISA) was developed and validated for monitoring the extraction efficacy. The catalytic reactivity against daidzin of β-glucosidase purified from honey was investigated. Results: Using NADESs as solvents, icELISA was suitable for the reliable determination of daidzin with high sensitivity (1.95–125 ng/mL), specificity (% cross-reactivity ≤ 2.60), and accuracy (98.3-106% daidzin recovery). Daidzin at a concentration of 75.8 ± 3.67 μg/mL was extracted using 50% (v/v) S-NADES, which was the most effective for the extraction compared to H-NADES, water and ethanol. In addition, daidzin was converted to daidzein by honey β-glucosidase. Conclusion: Both S-NADES and H-NADES were useful for the extraction, analysis, and bioconversion of daidzin, and β-glucosidase from honey might enhance the oestrogenic activity and bioavailability of PM phytochemicals.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded329    
    Comments [Add]    

Recommend this journal