Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2020  |  Volume : 16  |  Issue : 68  |  Page : 64-68

Rapid identification of the indigenous medicinal crop Cinnamomum osmophloeum from various adulterant Cinnamomum species by DNA polymorphism analysis

1 Department of Chinese Pharmaceutical Science and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
2 Department of Bioresources, Da-Yeh University, Changhua, Taiwan
3 Department of Safety, Health and Environmental Engineering, Mingchi University of Technology, Taipei, Taiwan

Correspondence Address:
Meng-Shiunn Lee
91, Hsueh-Shih Road, Taichung
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/pm.pm_267_19

Rights and Permissions

Background: Cinnamomum osmophloeum (Co), a member of the Lauraceae, is an indigenous medicinal crop in Taiwan, and it contains higher cinnamaldehyde in essential oil than do other Cinnamomum species. Among these species, Cinnamomum burmannii (Cb) is frequently adulterated as Co because of their similar morphological characteristics or features. Objective: The purpose of this study was to develop a DNA-based molecular method for rapid authentication of the indigenous Co and prevention of its adulteration. Materials and Methods: The internal transcribed spacer (ITS) regions of nuclear ribosomal DNA from various Cinnamomum species were amplified by polymerase chain reaction (PCR), and these obtained sequences were used for sequence analysis. Based on the sequence variants among various Cinnamomum species, restriction fragment length polymorphism (RFLP) was used to differentiate these Cinnamomum plants. Results: Two restriction endonucleases, MylI and EcoRV, were specifically used to digest the PCR-amplified ITS DNA from seven Cinnamomum species. The PCR-RFLP results demonstrated that the different restriction patterns that were produced by these two restriction enzymes clearly distinguished Co from Cb and five other Cinnamomum species simultaneously. Conclusion: The PCR-RFLP analysis developed in this study provides an alternative method for rapidly identifying Cinnamomum plants at the species level using DNA polymorphisms.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded303    
    Comments [Add]    
    Cited by others 2    

Recommend this journal