Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2019  |  Volume : 15  |  Issue : 62  |  Page : 78-83

Exploring the potential of Desmodium gangeticum (L.) DC. extract against spatial memory deficit in rats

1 Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
2 Radhika Ayurveda Research and Development, Pune, Maharashtra, India
3 Organic Division, National Chemical Laboratory, Pune, Maharashtra, India

Correspondence Address:
Jayesh Mudgal
Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal - 576 104, Karnataka
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/pm.pm_501_18

Rights and Permissions

Background: A few published reports demonstrated the neuroprotective effect of Desmodium gangeticum (L.) DC. in an acute model of dementia. Objective: The purpose of the present study was to evaluate the preclinical efficacy of D. gangeticum against chronic dementia when administered prophylactically. Materials and Methods: Chronic spatial memory deficit was induced in rats by aluminum chloride (AlCl3, 10 mg/kg, i.p.). Treatment with hydroalcoholic whole plant extract of D. gangeticum (DG extract) was initiated 2 week before AlCl3 challenge and continued till the 51st day after the challenge, orally at the dose of 400 mg/kg/day. The spatial memory was assessed by Morris water maze test. Hippocampal and frontal cortex acetyl cholinesterase (AChE) and oxidative stress were assessed in diseased rat brains. Results: Chronic administration of AlCl3 produced spatial memory deficit in rats. Memory impairment was manifested in rats as an increase in escape latency and D-quadrant latency whereas a decrease in total time spent in D-quadrant. These behavioral alterations were reversed significantly by the treatment with DG extract. In addition, DG extract significantly increased the island time, indicating memory improvement. DG extract corrected the declined AChE in frontal cortex and altered frontal cortex/hippocampus catalase activity. Phytochemical investigation of the DG extract revealed large content of saponins among the other phytochemicals such as tannins, alkaloids, and flavonoids. Conclusion: These results indicate the possible prophylactic potential of saponin-rich DG extract against chronic memory deficit in rats.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded136    
    Comments [Add]    

Recommend this journal