ORIGINAL ARTICLE |
|
Year : 2019 | Volume
: 15
| Issue : 62 | Page : 47-53 |
|
Cytoprotective effect of Cactus cladode (Opuntia ficus-indica) against chlorpyrifos induced reactive oxygen species in rat hepatocytes: Involvement of heat shock protein 70 and CYP1A1/2 proteins
Hafiz Antar Makeen1, Saida Ncibi2, Syam Mohan3, Abdullah Farasani3, Roger Rahmani4, Mohammed Al Bratty5, Hassan A Alhazmi5
1 Department of Clinical Pharmacy, Pharmacy Practice Research Unit, Jazan, Kingdom of Saudi Arabia 2 Research Unit BMG, Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, Zarroug, Gafsa, Tunisia; Department of Biology, Faculty of Science, Jazan University, Jazan, Kingdom of Saudi Arabia 3 Medical Research Centre, Jazan University, Jazan, Kingdom of Saudi Arabia 4 Toxicologie Cellulaire et Molecularie des Xenobiotiques, Sophia Antipolis, France 5 Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia
Correspondence Address:
Syam Mohan Medical Research Center, Jazan University, Jazan Kingdom of Saudi Arabia
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/pm.pm_484_18
|
|
Background: Organophosphorus insecticides are well known to induce hepatotoxicity. One among this is chlorpyrifos (CPF), which is an insecticide inducing various toxicities including in liver. Objective: This investigation focused on CPF-induced oxidative damage in rat hepatocytes primary culture and the protective effect of Cactus cladode aqueous extract. Materials and Methods: Hepatocytes were treated with CPF (50, 75, and 150 μM) and cactus aqueous extract. On treatment for 48 h, mortality within these cells was determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide test, reactive oxygen species (ROS) levels were measured by H2DCFDA test. Furthermore, heat shock protein 70 (HSP70) and CYP1A1/2 levels were determined using western blot analysis. Annexin V and 4',6-diamidino-2-phenylindole analysis was run to determine the level of cell death and cytoprotection exerted by CPF and extracts, respectively. Results: The results showed that CPF increases the levels of H2O2 and HSP70 and induces CYP1A1/2 and mortality within these cells. In the other side of this study, the co-treatment of these cells with CPF and Cactus cladode aqueous extract showed a recovery of these parameters. It also has been found that the Cactus cladode aqueous extract has the potential to do cytoprotective effect by preventing necrosis induced by CPF. Conclusion: Taken together, these findings suggest that the toxicity exerted by CPF in hepatocytes are involved with the generation of ROS and the regulation of well-controlled programmed cell death, which could be well protected by the Cactus cladode extract pretreatment.
|
|
|
|
[FULL TEXT] [PDF]* |
|
 |
|