Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2018  |  Volume : 14  |  Issue : 58  |  Page : 489-494

Anti-neuro-inflammatory effects of the bioactive compound capsaicin through the NF-κB signaling pathway in LPS-stimulated BV2 microglial cells

1 Third Affiliated Hospital, Beijing University of Chinese Medicine, 51 Anwai Xiaoguan Street, ChaoYang District, Beijing, 100029, People's Republic of China
2 Neurology Department, Xuan Wu Hospital of Capital Medical University, 45 Changchun St. Beijing, 100053, People's Republic of China

Correspondence Address:
Miao Qu
Neurology Department, Xuan Wu Hospital of Capital Medical University, 45 Changchun St. Beijing, 100053
People's Republic of China
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/pm.pm_73_18

Rights and Permissions

Background: Inflammation in the central nervous system, resulting from a loss of control involving a network of neuronal cells, is foremost contributors to the instigation and advancement of major neurodegenerative diseases. Therefore, therapeutic strategies should restore back to a well-controlled and finely-tuned balance of immune reactions, and protect neurons from inflammatory damage. Objective: The objective of this study is to evaluate the anti-neuroinflammatory potential of Capsaicin in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. Materials and Methods: In this present study, we selected Capsaicin and investigated through cell-based-assay systems through the various cellular techniques enzyme-linked immunosorbent, immunoblot and immunofluorescence assays to identify anti-inflammatory effects. Results: We found that capsaicin exhibited highly anti-inflammatory and neuroprotective effects in cell culture experiments, reduced nitric oxide, tumor necrosis factor-α, interleukin-1 β, and interleukin expression from activated BV-2 microglia cells dose-dependently. On the intracellular level, capsaicin inhibited IκB-phosphorylation and subsequently nuclear Factor-κB (NF-κB)-translocation in microglia cells. Further, capsaicin blocked the protein expressions of inducible nitric oxide synthase and cyclooxygenase-2. Further, capsaicin inhibits the increased production of pro-inflammatory responses in LPS-stimulated BV-2 cells by suppressing NF-κB activation. Conclusion: The significant inhibition of neuroinflammatory responses in stimulated microglial cells together indicate that capsaicin is a potential therapeutic agent and could possibly be used in the development of novel drug for the prevention and treatment of neuroinflammatory diseases. Abbreviations used: CNS: Central Nervous System; iNOS: Inducible nitric oxide synthase; COX-2: Cyclooxygenase; NF-κB: Nuclear factor kappa-light-chain-enhancer of activated B cells; LPS: Lipopolysaccharide; PGE2: Prostaglandin E2; NO: Nitric oxide; IL-6: Interleukin; IL-1 β-interleukin-1 β; TNF-α: Tumor necrosis factor-α

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded187    
    Comments [Add]    
    Cited by others 4    

Recommend this journal