Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2017  |  Volume : 13  |  Issue : 52  |  Page : 607-612

Helichrysetin induces DNA damage that triggers JNK-mediated apoptosis in Ca Ski cells

Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence Address:
Saiful Anuar Karsani
Faculty of Science, Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/pm.pm_53_17

Rights and Permissions

Background: Cervical cancer has become one of the most common cancers in women and currently available treatment options for cervical cancer are very limited. Naturally occurring chalcones and its derivatives have been studied extensively as a potential anticancer agent in different types of cancer and helichrysetin is naturally occurring chalcone that possess potent antiproliferative activity toward human cancer cells. Materials and Methods: Inhibitory activity of helichrysetin was evaluated at different concentrations. Ability of helichrysetin to induce apoptosis and its relation with c-Jun N-terminal kinase (JNK)-mediated mechanism of apoptosis was assessed using flow cytometry and Western blotting. Results: Helichrysetin inhibited Ca Ski cells at half maximal inhibitory concentration 30.62 ± 0.38 μM. This compound has the ability to induce DNA damage, mitochondrial membrane disruption, and loss of cell membrane integrity. We have shown that apoptosis was induced through the activation of JNK-mediated apoptosis by DNA damage in the cells then triggering p53-downstream apoptotic pathway with increased expression of pro-apoptotic proteins, Bax and caspase 3, and suppression of Bcl-2 anti-apoptotic protein. DNA damage in the cells also caused phosphorylation of protein ataxia-telangiectasia mutated, an activator of DNA damage response. Conclusion: We conclude that helichrysetin can inhibit Ca Ski cells through DNA damage-induced JNK-mediated apoptotic pathway highlighting the potential of this compound as anticancer agent for cervical cancer. Abbreviations used: ATM: Ataxia-telangiectasia mutated, DAPI: 4',6-diamidino-2-phenylindole, DMSO: Dimethyl sulfoxide, FITC: Fluorescein isothiocyanate, IC50: Half maximal inhibitory concentration, JC1-5,5',6,6'-Tetrachloro: 1',3,3'-tetraethylbenzimidazolylcarbocyanine, iodide, JNK: c-Jun N-terminal kinase, MMP: Mitochondrial membrane potential, PBS: Phosphate-buffered saline, SRB: Sulforhodamine B, TUNEL: Terminal deoxynucleotidyl transferase dUTP nick labeling

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded153    
    Comments [Add]    
    Cited by others 2    

Recommend this journal