Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2017  |  Volume : 13  |  Issue : 52  |  Page : 553-558

Evaluating the feasibility of five candidate DNA Barcoding Loci for Philippine Lasianthus Jack (Lasiantheae: Rubiaceae)

1 The Graduate School, University of Santo Tomas, España Blvd., 1015 Manila, Philippines
2 Department of Biological Sciences, Institute of Arts and Sciences, Far Eastern University, Nicanor Reyes Street, Sampaloc, 1008 Manila, Philippines
3 The Graduate School and Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Blvd, 1015 Manila, Philippines

Correspondence Address:
Grecebio Jonathan D Alejandro
Rm. 302, Plant Sciences Laboratory, Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., 1015 Manila
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/pm.pm_1_17

Rights and Permissions

Introduction: The pantropical genus Lasianthus Jack is identified for high phenotypic plasticity making traditional taxonomic identification difficult. Having some members with important medicinal properties, a precise complimentary identification through DNA barcoding is needed for species delineation. Materials and Methods: In this study, 12 samples representing six Philippine Lasianthus species were used to determine the most efficient barcoding loci among the cpDNA markers (matK, rbcL, rps16, and trnT-F) and nrDNA (ITS) based on the criteria of universality, discriminatory power, and resolution of species. Results: The results revealed that ITS has the recommended primer universality, greatest interspecific divergences, and average resolution of species. Among the cpDNA markers, matK and rbcL are recommended but with minimal resolution of species. While trnT-F showed moderate interspecific variations and resolution of Lasianthus species, rps16 has the lowest interspecific divergence and resolution of species. Conclusion: Consequently, ITS is the potential ideal DNA barcode for Lasianthus species. Abbreviations used: ITS: Internal Transcribe Spacer, matK: maturase K, rbcL: ribulose-1,5-biphospahte-carboxylase, rps16: ribosomal protein 16 small subunit gene.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded207    
    Comments [Add]    
    Cited by others 1    

Recommend this journal