Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2016  |  Volume : 12  |  Issue : 47  |  Page : 184-187

Responsive surface methodology optimizes extraction conditions of industrial by-products, Camellia japonica seed cake

1 School of Human Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA
2 Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 660-758, Republic of Korea
3 Department of Food and Biotechnology, Korea University, Seoul 136-701, Republic of Korea

Correspondence Address:
Eui-Cheol Shin
Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 660-758
Republic of Korea
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0973-1296.186339

Rights and Permissions

Background: The central nervous system is easily damaged by oxidative stress due to high oxygen consumption and poor defensive capacity. Hence, multiple studies have demonstrated that inhibiting oxidative stress-induced damage, through an antioxidant-rich diet, might be a reasonable approach to prevent neurodegenerative disease. Objective: In the present study, response surface methodology was utilized to optimize the extraction for neuro-protective constituents of Camellia japonica byproducts. Materials and Methods: Rat pheochromocytoma cells were used to evaluate protective potential of Camellia japonica byproducts. Results: Optimum conditions were 33.84 min, 75.24%, and 75.82°C for time, ethanol concentration and temperature. Further, we demonstrated that major organic acid contents were significantly impacted by the extraction conditions, which may explain varying magnitude of protective potential between fractions. Conclusions: Given the paucity of information in regards to defatted C. japonica seed cake and their health promoting potential, our results herein provide interesting preliminary data for utilization of this byproduct from oil processing in both academic and industrial applications. SUMMARY
  • Neuro-protective potential of C. japonica seed cake on cell viability was affected by extraction conditions
  • Extraction conditions effectively influenced on active constituents of C. japonica seed cake
  • Biological activity of C. japonica seed cake was optimized by the responsive surface methodology.
Abbreviations used: GC-MS: Gas chromatography-mass spectrometer, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, PC12 cells: Pheochromocytoma, RSM: Response surface methodology. Eui-Cheol Shin

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded133    
    Comments [Add]    
    Cited by others 2    

Recommend this journal