Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 

  Table of Contents  
Year : 2015  |  Volume : 11  |  Issue : 44  |  Page : 675-681  

Repellant and insecticidal activities of shyobunone and isoshyobunone derived from the essential oil of Acorus calamus rhizomes

1 College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, Liaoning, China
2 Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, College of Resources Science and Technology, Beijing Normal University, NO.19 Xinjiekouwai Street, Beijing 100875, China
3 China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Xicheng District, Beijing 100088, China

Date of Submission30-Jul-2014
Date of Acceptance15-Sep-2014
Date of Web Publication16-Sep-2015

Correspondence Address:
Cheng-Fang Wang
China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Xicheng District, Beijing 100088
Login to access the Email id

Source of Support: This project was supported by the National Natural Science Foundation of China (No. 81374069) and Beijing Municipal Natural Science Foundation (No. 7142093), Conflict of Interest: None

DOI: 10.4103/0973-1296.165543

Rights and Permissions

Context: It was found that the essential oil of Acorus calamus rhizomes showed insecticidal activity. Aim: The aim of this study was to determine the chemical composition of the essential oil from A. calamus rhizomes, evaluate insecticidal and repellant activity against Lasioderma serricorne (LS) and Tribolium castaneum (TC), and to isolate any insecticidal constituents from the essential oil. Materials and Methods: Essential oil from A. calamus was obtained by hydrodistillation and analyzed by gas chromatography (GC) flame ionization detector and GC-mass spectrometry. The insecticidal and repellant activity of the essential oil and isolated compounds was tested using a variety of methods. Results: The main components of the essential oil were identified to be isoshyobunone (15.56%), β-asarone (10.03%), bicyclo[6.1.0]non-1-ene (9.67%), shyobunone (9.60%) and methylisoeugenol (6.69%). Among them, the two active constituents were isolated and identified as shyobunone and isoshyobunone. The essential oil showed contact toxicity against LS and TC with LD 50 values of 14.40 and 32.55 μg/adult, respectively. The isolated compounds, shyobunone and isoshyobunone also exhibited strong contact toxicity against LS adults with LD 50 values of 20.24 and 24.19 μg/adult, respectively, while the LD 50 value of isoshyobunone was 61.90 μg/adult for TC adults. The essential oil, shyobunone and isoshyobunone were strongly repellent (98%, 90% and 94%, respectively, at 78.63 nL/cm 2 , after 2 h treatment) against TC. Conclusion: The essential oil, shyobunone and isoshyobunone possessed insecticidal and repellant activity against LS and TC.

Keywords: Acorus calamus, contact toxicity, Lasioderma serricorne, repellency, Tribolium castaneum

How to cite this article:
Chen HP, Yang K, Zheng LS, You CX, Cai Q, Wang CF. Repellant and insecticidal activities of shyobunone and isoshyobunone derived from the essential oil of Acorus calamus rhizomes. Phcog Mag 2015;11:675-81

How to cite this URL:
Chen HP, Yang K, Zheng LS, You CX, Cai Q, Wang CF. Repellant and insecticidal activities of shyobunone and isoshyobunone derived from the essential oil of Acorus calamus rhizomes. Phcog Mag [serial online] 2015 [cited 2022 Sep 29];11:675-81. Available from: http://www.phcog.com/text.asp?2015/11/44/675/165543

   Introduction Top

The red flour beetle, Tribolium castaneum (TC) Herbst and the cigarette beetle, Lasioderma serricorne (LS) Fabricius are the most widespread and destructive primary insect pests of stored cereals. [1] The infestations of stored product insects currently not only cause significant losses due to the consumption of grains but also result in the rise of temperature and moisture which lead to an accelerated growth of molds, including toxigenic species. [2] Control of stored product insects relies heavily on the use of synthetic insecticides and fumigants, that has led to problems such as disturbances of the environment, increasing costs of application, pest resurgence, pest resistance to pesticides and lethal effects on nontarget organisms in addition to direct toxicity to users. [3] These problems have necessitated a search for alternative eco-friendly insect pest control methods. [4] Botanical pesticides have the advantage of providing novel modes of action against insects that can reduce the risk of cross-resistance as well as offering new leads for design of target-specific molecules. [5],[6] The use of essential oils or their constituents with low mammalian toxicity can effectively prevent and/or suppress insect pest especially in storage. [5] Essential oils from many plants have been evaluated with success for insecticidal/repellency activity against stored-product insects/mites, in some cases, have been proven more effective than traditionally used organophosphorus pesticides. [7],[8],[9] During our screening program for new agrochemicals from local wild plants and Chinese medicinal herbs, the essential oil from Acorus calamus rhizomes has been found to possess contact and repellent activities towards LS and TC.

Acorus calamus (Linn.), a member of the family Araceae, is a perennial and semiaquatic plant with creeping rhizomes. Commonly known as sweet flag, A. calamus wildly grows along swampy and marshy areas in the northern temperate and subtropical regions of Asia, North America and Europe. [10] A. calamus is well known for its beneficial and medicinal properties in Indian medical system. Pharmacological studies have revealed that the plant possesses a wide range of therapeutic activities, including behavior-modifying, anticonvulsant, acetyl cholinesterase inhibitory, [11],[12] antispasmodic, antidepressant, anxiolytic, [13],[14],[15] anti-diabetic, [16] hypolipidemic, [17] antidiarrheal, [18] bronchodilatory, [19] anti-inflammatory, [20] cytoprotective [21] and analgesic properties. [22] In addition, the essential oil of A. calamus has been demonstrated to possess repellency activity against the maize weevil, S. zeamais[23] and insecticidal activity against many species of insects, e.g., the larger grain borer, Prostephanus truncates, [24] the tobacco armyworm, Spodoptera litura[25] and the booklouse, Liposcelis bostrychophila. [26] However, a literature survey has shown that there is no report on contact/repellency of A. calamus essential oil against the red flour beetle and the cigarette beetle, thus we decided to investigate the chemical constituents and contact/repellency activity of the essential oil of A. calamus against TC and LS for the first time and to isolate any biologically active compounds from its essential oil.

   Materials and methods Top

Plants material

Rhizomes (3.5 kg) of A. calamus were collected in September 2012 in Dali City (35.23°N and 116.33°E), Yunnan province of China. The rhizomes were air-dried for one week and ground to a powder. The plant was identified by Dr. Liu, Q.R. (College of Life Sciences, Beijing Normal University, Beijing, China) and a voucher specimen (BNU-CMH-Dushuahan-2012-11-25-006) was deposited at the Herbarium (BNU) of College of Life Sciences, Beijing Normal University.


Cigarette beetles (LS) and red flour beetles (TC) were obtained from laboratory cultures maintained for the last 2 years in dark in incubators at 29°C ± 1°C and 70-80% relative humidity. The insects were reared in glass containers (0.5 L) containing wheat flour at 12-13% moisture content mixed with yeast (10:1, w/w). Adults used in all the experiments were about 7 ± 2 days old regardless of gender.

Extraction and composition of essential oil

The ground powder of A. calamus rhizomes was subjected to hydrodistillation using a modified Clevenger-type apparatus for 6 h and extracted with n-hexane. Anhydrous sodium sulphate was used to remove water after extraction. The essential oil was stored in airtight container in a refrigerator at 4°C.

Gas chromatography-mass spectrometry (GC-MS) analysis was performed on a Thermo Finnigan Trace DSQ instrument equipped with a flame ionization detector and an HP-5 MS (30 m × 0.25 mm × 0.25 μm) capillary column. The column temperature was programmed at 50°C for 2 min, then increased at 2°C/min to the temperature of 150°C and held for 2 min, and then increased at 10°C/min until the final temperature of 250°C was reached, where it was held for 5 min. The injector temperature was maintained at 250°C and the volume injected was 0.1 mL of 1% solution (diluted in n-hexane). The carrier gas was helium at flow rate of 1.0 mL/min. Spectra were scanned from 50 to 550 m/z. Most constituents were identified by comparison of their retention indices with those reported in the literatures. The retention indices were determined in relation to a homologous series of n-alkanes (C 5 -C 36 ) under the same operating conditions. GC retention time and their mass spectra that stored in NIST 05 and Wiley 275 libraries or from literature were used for identify the essential oil components. [27] Relative percentages of the individual components of the essential oil were obtained by averaging the GC peak area% reports.

Purification and characterization of two constitunent compounds

The crude essential oil (5 ml) was chromatographed on a silica gel (Qingdao Marine Chemical Plant, Shandong province, China) column (30 mm i.d., 500 mm length) by gradient elution with n-hexane first, then with n-hexane-ethyl acetate, and last with ethyl acetate to obtain 22 fractions. Based on contact toxicity/repellent test, fraction 3 and 15 were chosen for further fractionation. With PTLC, two purified compounds were obtained and they were analysised by various NMR techniques including 1 H NMR and 13 C NMR. Combining all the NMR spetra data, the two isolated compounds were finally recognized as shyobunone ( 1 , 0.24 g) [28],[29] and isoshyobunone ( 2 , 0.35 g). [28],[30] NMR experiments were performed on Bruker Avance DRX 500 instrument using CDCl 3 as solvent with TMS as internal standard.

Contact toxic activity test

The contact toxicity of the essential oil/pure compounds against LS and TC adults was measured as described by Liu and Ho. [1] Range-finding studies were run to determine the appropriate testing concentrations. A serial dilution of the essential oil/compounds (five concentrations) was prepared in n-hexane. Aliquots of 0.5 μL of the dilutions were applied topically to the dorsal thorax of the insects. Controls were determined using n-hexane. Five replicates were carried out for all treatments and controls. Both treated and control insects were then transferred to glass vials (10 insects/vial) with culture media and kept in incubators. Mortality was recorded after 24 h and the LD 50 values were calculated using Probit analysis. [31] Positive control, pyrethrins (pyrethrin I and II, 37%) were purchased from Dr Ehrenstorfer GmbH.

Repellency tests

The repellent activity of the essential oil/pure compounds to TC adults was tested using the area preference method. [32] The essential oil/compounds was diluted in n-hexane to different concentrations (78.63, 15.73, 3.15, 0.63 and 0.13 nL/cm 2 ), and n-hexane was used as the control. Filter paper (9 cm in diameter) was cut in half. 500 μL of treatment solution was placed on one half of the filter paper and allowed to dry for 30s. The other half was treated with 500 μL of n-hexane. The treated side was then joined to the control side by tape and placed in glass petri dishes (9 cm in diameter). Twenty insects were released in the center of each filter paper disk, and a cover was placed over the Petri dish. Five replicates were used. Counts of the insects present on each strip were made after 2 and 4 h. The percent repellency (PR) of each volatile oil/compound was then calculated using the formula:

PR (%) = ([Nc − Nt]/[Nc + Nt]) ×100

Where N c is the number of insects present in the negative control half and N t is the number of insects present in the treated half. Analysis of variance (One-Way ANOVA and GLM Univariate) and Tukey's test were conducted by using SPSS 20.0 (IBM, Armonk, NY) for Windows 2007. Percentage mortality data were subjected to arcsine square-root transformation before analysis of variance. A commercial repellent, N, N-diethyl-3-methylbenzamide (DEET), was purchased from the National Center of Pesticide Standards (8 Shenliao West Road, Tiexi District, Shenyang 110021, China) and used as a positive control.

   Results Top

Chemical compounds of the essential oil

The yield of A. calamus rhizomes essential oil was 1.00% (v/w) and the density of the essential oil was determined to be 0.93 g/ml. GC-MS analysis of the essential oil of A. calamus rhizomes led to the identification and quantification of a total of 56 major components, accounting for 89.21% of the total components present [Table 1].
Table 1: Chemical components of the essential oil of A. calamus rhizomes

Click here to view

Contact toxicity

The essential oil of A. calamus rhizomes showed strong contact toxicity against LS and TC adults with LD 50 values of 14.40 and 32.55 μg/adult, respectively [Table 2]. Compared with the positive control pyrethrins (37% pyrethrin I and pyrethrin II), the crude essential oil demonstrated 60 and 125 times less toxicity against the two insect species because the pyrethrins had acute contact toxicity to LS and TC adult with LD 50 values of 0.24 μg/adult and 0.26 μg/adult, respectively. The isolated compounds, shyobunone and isoshyobunone also exhibited strong contact toxicity against LS adults with LD 50 values of 20.24 and 24.19 μg/adult, respectively [Table 2], while the LD 50 value of isoshyobunone, was 61.90 μg/adult for TC adults.
Table 2: Contact toxicity of essential oil of Acorus calamus rhizomes and its main components against LS and TC adults

Click here to view

Repellent activity

The results of repellency assays for the essential oil and isolated compounds against TC adults are presented in [Figure 1] and [Figure 2]. However, the crude essential oil showed no obvious repellency against LS adults because the essential oil at dose of 78.63 and 15.73 nL/cm 2 has weak repellency (56% and 26%, respectively) to LS after 2 h treatment. A. calamus rhizomes oil at dose of 78.63 nL/cm 2 showed 98% and 98% repellency against TC adults at 2 and 4 h after exposure, respectively. The repellent responses of TC adults to the essential oil at dose of 15.73 nL/cm 2 (P = 0.291) and 3.15 nL/cm 2 (P = 0.103) were the same level compared to that at the highest concentration treatment. Shyobunone and isoshyobunone also showed obvious repellency (>80%) at dose of 78.63 and 15.73 nL/cm 2 after 4 h treatment. However, compared with shyobunone, isoshyobunone produced stronger repellency (100% and 92%, respectively, at 15.73 nL/cm 2 , after 2 and 4 h treatment). At the lowest concentration (0.13 nL/cm 2 ), isoshyobunone still showed repellency (64%) against TC adults at 2 h after exposure.
Figure 1: Percentage repellency (PR) of the essential oil from Acorus calamus rhizomes and its constituents against Tribolium castaneum at 4 h after exposurea. aMeans in the same column followed by the same letters do not differ significantly (P > 0.05) in ANOVA and Tukey's tests. PR was subjected to an arcsine square-root transformation before ANOVA and Tukey's tests. bPositive control

Click here to view
Figure 2: Constituent compounds isolated from the essential oil of Acorus calamus rhizomes

Click here to view

   Discussion Top

The main constituents of A. calamus rhizomes essential oil were isoshyobunone (15.56%), β-asarone (10.03%), bicyclo[6.1.0]non-1-ene (9.67%), shyobunone (9.60%) and methylisoeugenol (6.69%). The results were different from the previous reports. These differences might have been due to harvest time and local, climatic and seasonal factors as well as storage duration of medicinal herbs. [33],[34] For example, α-asarone (50.09%), (E)-methylisoeugenol (14.01%), methyleugenol (8.59%), β-asarone (3.51%), α-cedrene (3.09%) and camphor (2.42%) were the main components of the essential oil of A. calamus rhizomes obtained from China. [26] However, the essential oil of A. calamus rhizomes collected from Italy contained acorenone (21.6%), (Z)-sesquilavandulol (13.0%), shyobunone (7.0%), α-asarone (5.1%) and dehydroxyisocalamendiol (3.5%) [35] while the essential oil of A. calamus collected from Quebec, Canada contained preisocalamenediol (18.0%), acorenone (14.2%), shyobunone (13.3%) and cryptoacorone (7.5%). [36] The essential oil of A. calamus contained various chemical constituents, and the proportion of each chemical constituent of the oil particularly β-asarone varied in different genotypes and corresponds to the ploidy level. [13] It is reported that the tetraploids have higher (70-96%) β-asarone content, than the triploids (5-19%), and almost negligible in diploid genotypes. [37],[38] The above discussions suggest that further studies on plant cultivation and essential oil standardization would be expected because chemical composition of the essential oil varies greatly among the plant population.

To our knowledge, this is the first report regarding to insecticidal action of shyobunone and isoshyobunone against stored-grain insects, as exemplified here with LS and TC. Shyobunone showed more toxicity against LS and much less toxicity against TC than isoshyobunone [Table 2]. However, all the two isolated constituent compounds possessed less activity against LS adult than the crude essential oil [Table 2], suggesting that there may be some other stronger active compounds in small amounts in the essential oil or may be some synergistic action between the various compounds. In addition, we have an interesting discovery in this work. Shyobunone (1) and isoshyobunone (2) have the same molecular formula (C 15 H 24 O). They are a pair of isomers with a double bond located at different positions along the isopropyl side chain [Figure 3], but their contact toxicity is very different. Differences in the biological activities of geometric isomers were reported in coleopteran pests of stored products and in a yellow fever vector mosquito. In previous research, similar phenomena were also observed. cis-Asarone is toxic in addition to having strong antifeedant activity, whereas the trans isomer acts only as an antifeedant with no appreciable toxicity. [39] Park et al. [40] reported that the insecticidal activity against Sitophilus oryzae (L.), Callosobruchus chinensis (L.), and LS (F.) was more evident in (Z)-asarone than that in (E)-asarone. In addition, (Z)-9-octadecenoic acid was a more potent repellent agent than (E)-9-octadecenoic acid against Aedes aegypti (L.) adult females. [41] The tiny structural difference of these compounds may account for the significant differences in their insecticidal action. This action includes insect mortality and sublethal effects on behavior, depending on insect and mode of application.
Figure 3: Percentage repellency (PR) of the essential oil from Acorus calamus rhizomes and its constituents against Tribolium castaneum at 2 h after exposurea. aMeans in the same column followed by the same letters do not differ significantly (P > 0.05) in ANOVA and Tukey's tests. PR was subjected to an arcsine square-root transformation before ANOVA and Tukey's tests. bPositive control

Click here to view

Many essential oils and their constituents have been evaluated for repellency against insects. [42] For example, Zhang et al. reported that geraniol and citronellol exhibited stronger repellency against TC adults than DEET, whereas limonene and citronella showed the same level of repellency against TC adults compared with DEET. [32] The origanum oil, linalool and p-cymene at dose of 0.03 mg/cm 2 showed 98%, 83% and 85% repellency (after 2 h treatment) against TC adults, respectively. [43] However, in this paper, we report the repellency action of shyobunone and isoshyobunone for the first time. In this study, compared with the positive control, DEET, essential oil (P = 0.051), isoshyobunone (P = 0.721) exhibited the same level of repellency against TC adults, while shyobunone demonstrated less repllency than isoshyobunone [Figure 1].

   Conclusion Top

The above discussions suggest that the essential oil and its four compounds show the potential to be developed as natural insecticides and repellents against stored-products insects. However, for the practical application of the essential oil and the four compounds as novel insecticides/repellents, further studies on the safety of the essential oil and its four compounds toward human beings and on the development of formulations are necessary to improve the efficacy and stability, and to reduce cost.

   References Top

Liu ZL, Ho SH. Bioactivity of the essential oil extracted from Evodia rutaecarpa Hook f. Thomas ET. Against the grain storage insects, Sitophilus zeamais Motsch and Tribolium castaneum (Herbst). J Stored Prod Res 1999;35:317-28.  Back to cited text no. 1
Magan N, Hope R, Cairns V, Aldred D. Postharvest fungal ecology: Impact of fungal growth and mycotoxin accumulation in stored grain. Eur J Plant Pathol 2003;109:723-30.  Back to cited text no. 2
Isman MB. Plant essential oils as green pesticides for pest and disease management. ACS Symp 2004;887:41-51.  Back to cited text no. 3
Phillips TW, Throne JE. Biorational approaches to managing stored-product pests. Ann Rev Entomol 2010;55:375-97.  Back to cited text no. 4
Isman MB. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 2006;51:45-66.  Back to cited text no. 5
Isman MB. Botanical insecticides: For richer, for poorer. Pest Manag Sci 2008;64:8-11.  Back to cited text no. 6
Chu SS, Liu QR, Liu ZL. Insecticidal activity and chemical composition of the essential oil of Artemisia vestita from China. Biochem Syst Ecol 2010;38:489-92.  Back to cited text no. 7
Fang R, Jiang CH, Wang XY, Zhang HM, Liu ZL, Zhou L, et al. Insecticidal activity of essential oil of Carum carvi fruits from China and its main components against two grain storage insects. Molecules 2010;15:9391-402.  Back to cited text no. 8
Rajendran S, Srianjini V. Plant products as fumigants for stored-product insects control. J Stored Prod Res 2008;44:126-35.  Back to cited text no. 9
Mukherjee PK, Kumar V, Mal M, Houghton PJ. Acorus calamus: Scientific validation of ayurvedic tradition from natural resources. Pharm Biol 2007;45:651-66.  Back to cited text no. 10
Oh MH, Houghton PJ, Whang WK, Cho JH. Screening of Korean herbal medicines used to improve cognitive function for anti-cholinesterase activity. Phytomedicine 2004;11:544-8.  Back to cited text no. 11
Vohora SB, Shah SA, Dandiya PC. Central nervous system studies on an ethanol extract of Acorus calamus rhizomes. J Ethnopharmacol 1990;28:53-62.  Back to cited text no. 12
McGaw LJ, Jager AK, van Staden J. Isolation of β-asarone, an antibacterial and anthelmintic compound, from Acorus calamus from South Africa. S Afr J Bot 2002;68:31-5.  Back to cited text no. 13
Raina VK, Srivastava SK, Syamasunder KV. Essential oil composition of Acorus calamus L. from the lower region of the Himalayas. Flavour Fragr J 2003;18:18-20.  Back to cited text no. 14
Bertea CM, Azzolin CM, Bossi S, Doglia G, Maffei ME. Identification of an EcoRI restriction site for a rapid and precise determination of beta-asarone-free Acorus calamus cytotypes. Phytochemistry 2005;66:507-14.  Back to cited text no. 15
Wu HS, Zhu DF, Zhou CX, Feng CR, Lou YJ, Yang B, et al. Insulin sensitizing activity of ethyl acetate fraction of Acorus calamus L. in vitro and in vivo. J Ethnopharmacol 2009;123:288-92.  Back to cited text no. 16
Parab RS, Mengi SA. Hypolipidemic activity of Acorus calamus L. in rats. Fitoterapia 2002;73:451-5.  Back to cited text no. 17
Shoba FG, Thomas M. Study of antidiarrhoeal activity of four medicinal plants in castor-oil induced diarrhoea. J Ethnopharmacol 2001;76:73-6.  Back to cited text no. 18
Shah AJ, Gilani A. Bronchodilatory effect of Acorus calamus (Linn.) is mediated through multiple pathways. J Ethnopharmacol 2010;131:471-7.  Back to cited text no. 19
Kim H, Han TH, Lee SG. Anti-inflammatory activity of a water extract of Acorus calamus L. leaves on keratinocyte HaCaT cells. J Ethnopharmacol 2009;122:149-56.  Back to cited text no. 20
Smit HF, Woerdenbag HJ, Singh RH, Meulenbeld GJ, Labadie RP, Zwaving JH. Ayurvedic herbal drugs with possible cytostatic activity. J Ethnopharmacol 1995;47:75-84.  Back to cited text no. 21
Almeida RN, Navarro DS, Barbosa-Filho JM. Plants with central analgesic activity. Phytomedicine 2001;8:310-22.  Back to cited text no. 22
Yao YJ, Cai WL, Yang CJ, Xue D, Huang YZ. Isolation and characterization of insecticidal activity of (Z)-asarone from Acorus calamus L. Insect Sci 2008;15:229-36.  Back to cited text no. 23
Schmidt GH, Streloke M. Effect of Acorus calamus (L.) (Araceae) oil and its main compound β-asarone on Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae). J. Stored Prod Res 1994;30:227-35.  Back to cited text no. 24
Sharma PR, Sharma OP, Saxena BP. Effect of sweet flag rhizome oil (Acorus calamus) on hemogram and ultrastructure of hemocytes of the tobacco armyworm, Spodoptera litura (Lepidoptera: Noctuidae). Micron 2008;39:544-51.  Back to cited text no. 25
Liu XC, Zhou LG, Liu ZL, Du SS. Identification of insecticidal constituents of the essential oil of Acorus calamus rhizomes against Liposcelis bostrychophila Badonnel. Molecules 2013;18:5684-96.  Back to cited text no. 26
Adams RP. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy. Carol Stream, IL: Allured Publishing; 2001.  Back to cited text no. 27
Iguchi M, Nishiyama A, Koyama H, Yamamura S, Hirata Y. Isolation and structures of three new sesquiterpenes. Tetrahedron Lett 1968;9:5315-8.  Back to cited text no. 28
Niwa M, Terada Y, Iguchi M, Yamamura S. Stereochemical studies on the elemente-types sesquiterpenes from Acorus calamus L. Chem Lett 1977;72:1415-8.  Back to cited text no. 29
John RW, James FC. Photocycloaddition of methy-lcy-clobutene and (-)-piperitone: Synthesis of (-)-shyobunone and related sesquiterpenes. J Org Chem 1980;45:4475-8.  Back to cited text no. 30
Sakuma M. Probit analysis of preference data. Appl Entomol Zool 1998;33:339-47.  Back to cited text no. 31
Zhang JS, Zhao NN, Liu QZ, Liu ZL, Du SS, Zhou L, et al. Repellent constituents of essential oil of Cymbopogon distans aerial parts against two stored-product insects. J Agric Food Chem 2011;59:9910-5.  Back to cited text no. 32
Galambosi B, Peura P. Agrobotanical features and oil content of wild and cultivated forms of caraway (Carum carvi L.). J Essent Oil Res 1996;8:389-97.  Back to cited text no. 33
Laribi B, Bettaieb I, Kouki K, Sahli A, Mougou A, Marzouk B. Water deficit effects on caraway (Carum carvi L.) growth, essential oil and fatty acid composition. Ind Crop Prod 2009;30:372-9.  Back to cited text no. 34
Marongiu B, Piras A, Porcedda S, Scorciapino A. Chemical composition of the essential oil and supercritical CO2 extract of Commiphora myrrha (Nees) Engl. and of Acorus calamus L. J Agric Food Chem 2005;53:7939-43.  Back to cited text no. 35
Garneau FX, Collin G, Gagnon H, Belanger A, Lavoie S, Savard N, et al. Aromas from Quebec. I. Composition of the essential oil of the rhizomes of Acorus calamus L. J Essent Oil Res 2008;20:250-4.  Back to cited text no. 36
Rost LC, Bos R. Biosystematic investigation with Acorus L. 3 communication. Constituents of essential oils. Planta Med 1979;36:350-61.  Back to cited text no. 37
Todorova MN, Ognyanov IV, Shatar S. Chemical composition of essential oil from Mongolian Acorus calamus L. rhizomes. J Essent Oil Res 1995;7:191-3.  Back to cited text no. 38
Koul O, Smirle MJ, Isman MB. Asarones from Acorus calamus L. Oil: Their effect on feeding behavior and dietary utilization in Peridroma saucia. J Chem Ecol 1990;16:1911-20.  Back to cited text no. 39
Park C, Kim SI, Ahn YJ. Insecticidal activity of asarones identified in Acorus gramineus rhizome against three coleopteran stored-product insects. J Stored Prod Res 2003;39:333-42.  Back to cited text no. 40
Kim DH, Kim SI, Chang KS, Ahn YJ. Repellent activity of constituents identified in Foeniculum vulgare fruit against Aedes aegypti (Diptera: Culicidae). J Agric Food Chem 2002;50:6993-6.  Back to cited text no. 41
Nerio LS, Olivero-Verbel J, Stashenko E. Repellent activity of essential oils: A review. Bioresour Technol 2010;101:372-8.  Back to cited text no. 42
Kim SI, Yoon JS, Jung JW, Hong KB, Ahn YJ, Kwon HW. Toxicity and repellency of oregano essential oil and its components against Tribolium castaneum (Coleoptera: Tenebrionidae) adults. J Asia Pac Entomol 2010;13:369-73.  Back to cited text no. 43


  [Figure 1], [Figure 2], [Figure 3]

  [Table 1], [Table 2]

This article has been cited by
1 Plant secondary metabolites extracted from Acorus calamus rhizome from Western Ghats, India and repellent activity on Sitophilus oryzae
Mohamed S. Elshikh, E. Rani, Dunia A. Al Farraj, Fahad M.A. Al-Hemaid, Mohamed R. Abdel Gawwad, T.R.J. Jeba Malar, L. Dyona, P. Vijayaraghavan
Physiological and Molecular Plant Pathology. 2022; 117: 101743
[Pubmed] | [DOI]
2 Sublethal and transgenerational effects of a potential plant-derived insecticide, -asarone, on population fitness of brown planthopper, Nilaparvata lugens
Xueliang Xu, Xiang Li, Dong Wen, Chenchen Zhao, Linjuan Fan, Caiyun Wu, Zirong Liu, Kehong Han, Muhua Zhao, Shu Zhang, Yingjuan Yao
Entomologia Experimentalis et Applicata. 2022;
[Pubmed] | [DOI]
3 The Toxicity, Sublethal Effects, and Biochemical Mechanism of -Asarone, a Potential Plant-Derived Insecticide, against Bemisia tabaci
Ran Wang, Yong Fang, Wunan Che, Qinghe Zhang, Jinda Wang, Chen Luo
International Journal of Molecular Sciences. 2022; 23(18): 10462
[Pubmed] | [DOI]
4 Next Chapter in the Legend of Silphion: Preliminary Morphological, Chemical, Biological and Pharmacological Evaluations, Initial Conservation Studies, and Reassessment of the Regional Extinction Event
Mahmut Miski
Plants. 2021; 10(1): 102
[Pubmed] | [DOI]
5 Policy and Governance Implications for Transition to NTFP-Based Bioeconomy in Kashmir Himalayas
Ishtiyak Ahmad Peerzada, James Chamberlain, Mohan Reddy, Shalini Dhyani, Somidh Saha
Sustainability. 2021; 13(21): 11811
[Pubmed] | [DOI]
6 Evaluation of Botanical Powders for the Management of Rice Weevil (Sitophilus oryzae L. Coleoptera: Curculionidae) in Rupandehi, Nepal
Dipak Khanal, Subin Babu Neupane, Archana Bhattarai, Swarnima Khatri-Chhetri, Nisha Nakarmi, Sarita Sapkota, Bivekananda Mahat, Pushpa Pandey, Vinita Sharma, Gbor Kocsy
Advances in Agriculture. 2021; 2021: 1
[Pubmed] | [DOI]
7 Insecticidal efficacy of some essential oils against adults of Musca domestica L. (Diptera: Muscidae)
Mikhail A. Levchenko, Elena A. Silivanova, Pavel E. Khodakov, Saber Gholizadeh
International Journal of Tropical Insect Science. 2021; 41(4): 2669
[Pubmed] | [DOI]
8 Knockdown of CYP301B1 and CYP6AX1v2 increases the susceptibility of the brown planthopper to beta-asarone, a potential plant-derived insecticide
Xueliang Xu, Xiang Li, Zirong Liu, Fenshan Wang, Linjuan Fan, Caiyun Wu, Yingjuan Yao
International Journal of Biological Macromolecules. 2021; 171: 150
[Pubmed] | [DOI]
9 Nitrogen fertilization and the essential oils profile of the rhizomes of different sweet flag populations (Acorus calamus L.)
Sladana kobic, Mirjana D. Marcetic, Tatjana Kundakovic-Vasovic, Jovan Crnobarac
Industrial Crops and Products. 2019; 142: 111871
[Pubmed] | [DOI]
10 Preponderance of Oxygenated Sesquiterpenes and Diterpenes in the Volatile Oil Constituents of Lactuca serriola L. Revealed Antioxidant and Allelopathic Activity
Ahmed M. Abd-ElGawad, Abdelsamed I. Elshamy, Abd El-Nasser El Gendy, Saud L. Al-Rowaily, Abdulaziz M. Assaeed
Chemistry & Biodiversity. 2019; 16(8)
[Pubmed] | [DOI]
11 Insecticidal activities of methyleugenol and -asarone, from the herbal medicines Saishin and Sekishokon, and other alkoxy-propenyl-benzene derivatives against the cigarette beetle Lasioderma serricorne (Coleoptera: Anobiidae)
Toshihiro Imai,Ryota Masuda
Applied Entomology and Zoology. 2016;
[Pubmed] | [DOI]


    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

  In this article
    Materials and me...
    Article Figures
    Article Tables

 Article Access Statistics
    PDF Downloaded415    
    Comments [Add]    
    Cited by others 11    

Recommend this journal