Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2015  |  Volume : 11  |  Issue : 43  |  Page : 574-578

Optimization of induction, subculture conditions, and growth kinetics of Angelica sinensis (Oliv.) Diels callus

Department of Natural Medicinal Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China

Correspondence Address:
Chunyan Yan
Department of Natural Medicinal Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou
Login to access the Email id

Source of Support: National Natural Science Foundation of China (No. 81102779), Guangdong Natural Science Foundation (No. 9451022401003453), Pearl River S&T Nova Program of Guangzhou (2013J2200035), Innovation Project of Guangdong(2014KTSCX118) and High-level Talents Project of Institutions of Higher Learning in Guangdong Province., Conflict of Interest: None declared.

DOI: 10.4103/0973-1296.160443

Rights and Permissions

Background: Angelica sinensis (Oliv.) Diels is an important traditional Chinese medicine, and the medicinal position is its root. This perennial herb grows vigorously only in specific areas and the environment. Tissue culture induction of callus and plant regeneration is an important and effective way to obtain large scale cultures of A. sinensis. Objective: The objective was to optimize the inductive, subculture conditions, and growth kinetics of A. sinensis. Materials and Methods: Tissue culture conditions for A. sinensis were optimized using leaves and petioles (types I and II) as explants source. Murashige and Skoog (MS) and H media supplemented with 30 g/L sucrose, 7.5 g/L agar, and varying concentrations of plant growth regulators were used for callus induction. In addition, four different basal media supplemented with 1.0 mg/L 2,4 dichlorophenoxy acetic acid (2,4 D), 0.2 mg/L 6 benzyladenine (BA) and 30 g/L sucrose were optimized for callus subculture. Finally, growth kinetics of A. sinensis cultured on different subculture media was investigated based on callus properties, including fresh weight, dry weight, medium pH, callus relative fresh weight growth, callus relative growth rate (CRGR), and sucrose content. Results: MS medium supplemented with 5 mg/L α-naphthaleneacetic acid, 0.5 mg/L BA, 0.7 mg/L 2,4 D, 30 g/L sucrose and 7.5 g/L agar resulted in optimal callus induction in A. sinensis while petiole I was found as the best plant organ for callus induction. The B5 medium supplemented with 1.0 mg/L 2,4 D, 0.2 mg/L BA and 30 g/L sucrose displayed the best results in A. sinensis callus subculture assays. Conclusion: The optimized conditions could be one of the most potent methods for large scale tissue culture of A. sinensis.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded411    
    Comments [Add]    
    Cited by others 2    

Recommend this journal