Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 

  Table of Contents  
Year : 2015  |  Volume : 11  |  Issue : 42  |  Page : 327-336  

Sesamol, a lipid lowering agent, ameliorates aluminium chloride induced behavioral and biochemical alterations in rats

Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India

Date of Submission21-Jun-2014
Date of Acceptance10-Aug-2014
Date of Web Publication12-Mar-2015

Correspondence Address:
Mallikarjuna Rao Chamallamudi
Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal - 576 104, Karnataka
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0973-1296.153086

Rights and Permissions

Background: Sesame oil from the seeds of Sesamum indicum Linn. (Pedaliaceae) has been used traditionally in Indian medical practice of Ayurveda in the treatment of central nervous system disorders and insomnia. A few published reports favor the anti-dementia effect of sesamol (SML), an active constituent of sesame oil. Objective: Thus, the present study was aimed to explore the anti-dementia effect and possible mechanism (s) of SML in aluminium chloride (AlCl 3 )-induced cognitive dysfunction model in rodents with special emphasis on memory centers viz., hippocampus and frontal cortex. Methods: Male Wistar rats were exposed to AlCl 3 (175 mg/kg p.o.) for 60 days. SML (10 and 20 mg/kg) and rivastigmine (1 mg/kg) were administered orally 45 min before administration of AlCl 3 for 60 days. Spatial memory was assessed using Morris water maze test. After 60 days of treatment animals were sacrificed, hippocampus and frontal cortex were collected and analyzed for acetylcholinesterase (AChE) activity, tumor necrosis factor (TNF-α) level, antioxidant enzymes (Glutathione, catalase), lipid peroxidation, and nitrite level. The circulating triglycerides, total cholesterol, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) levels were also analyzed. Results: SML significantly prevented behavioral impairments in aluminium-exposed rats. Treatment with SML reversed the increased cholesterol, triglycerides and LDL while raised the HDL levels. SML significantly corrected the effect of AlCl 3 on AChE activity. Further, SML reversed the elevated nitric oxide, TNF-α and reduced antioxidant enzymes in hippocampus and frontal cortex. Conclusion: The present study suggests the neuro-protection by SML against cognitive dysfunction induced by environmental toxin (AlCl 3 ) in hippocampus and frontal cortex.

Keywords: Aluminium, dementia, hypolipidemia, memory, sesamol, tumor necrosis factor-α

How to cite this article:
John J, Nampoothiri M, Kumar N, Mudgal J, Nampurath GK, Chamallamudi MR. Sesamol, a lipid lowering agent, ameliorates aluminium chloride induced behavioral and biochemical alterations in rats. Phcog Mag 2015;11:327-36

How to cite this URL:
John J, Nampoothiri M, Kumar N, Mudgal J, Nampurath GK, Chamallamudi MR. Sesamol, a lipid lowering agent, ameliorates aluminium chloride induced behavioral and biochemical alterations in rats. Phcog Mag [serial online] 2015 [cited 2022 Jun 26];11:327-36. Available from: http://www.phcog.com/text.asp?2015/11/42/327/153086

   Introduction Top

Aluminium, a highly neurotoxic metal, is considered to be involved in the pathogenesis of neurodegenerative disorders like Alzheimer's disease (AD) [1],[2],[3] and Parkinson's disease. [4] Experimental animals, exposed to aluminium have developed AD-like conditions, characterized by elevated levels of amyloid beta (Aβ) protein and amyloid precursor protein (APP), [5],[6] mitochondrial dysfunction, depletion of ATP, [7],[8] induction of lipid peroxidation and lipid dystrophy, [9],[10] accelerated production of phosphorylated tau, [11] impairment of cholinergic projections [12] and promotion of apoptotic neuronal death. [13],[14] Thus, aluminium chloride (AlCl 3 )-induced cognitive dysfunction model has been widely used for testing drugs against AD. [15],[16],[17]

Currently approved treatments for AD target neurotransmitter systems and only provide modest improvement in cognitive impairment. Thus, it is necessary to develop effective medications that go beyond acetylcholinesterase (AChE) inhibitors and N-methyl-D-aspartate antagonist. Several studies have demonstrated that hypercholesterolemia could cause dementia and Aβ42 deposition in hippocampal region. [18] Hypercholesterolemia is an outcome of sedentary life-style resulting in obesity and lipid dystrophy. Traditionally, in Indian medical practice of Ayurveda, sesame oil from the seeds of Sesamum indicum Linn. (Pedaliaceae) has been used to correct central nervous system disorders and insomnia. [19] Sesamol (SML), an agent obtained from sesame oil, edible oil, is found to reduce cholesterol and triglyceride levels in acute and chronic models of hyperlipidemia. [20] It is also reported to have antioxidant, neuro-protective, [21] anti-inflammatory [22] and hepatoprotective [23] activities. Although, all these actions of SML are beneficial to overcome the condition of dementia, SML has not been investigated for its behavioral effects in chronic models of dementia. In view of this, the present study was designed to investigate the effect of SML, a lipid lowering agent in AlCl 3 -mediated behavioral and biochemical changes in rats.

   Materials and methods Top


Male Wistar rats, weighing 200-250 g (90 days old) procured from Central Animal Research Facility of Manipal University, Manipal were used. Animals were acclimatized to laboratory conditions for 7 days before the experiment and they were maintained under controlled conditions of temperature (23°C ± 2°C), humidity (50% ±5%). The animals were kept under standard conditions of 12 h light/dark cycle in sanitized polypropylene cages containing sterile paddy husk as bedding with free access to food and water ad libitum. The experimental protocol was approved by the Institutional Animal Ethics Committee, Kasturba Medical College, Manipal [IAEC/KMC/73/2012] and was carried out in accordance with the guidelines provided by the Committee for the Purpose of Control and Supervision of Experiments on Animals, Government of India.

Drugs and treatment schedule

Aluminium chloride (Spectrochem Pvt Limited, India), SML (Sigma-Aldrich Co, St. Louis, MO, USA) and rivastigmine (RIV) (Dr. Reddy's Laboratories, Hyderabad, India) solutions were made freshly on each day for administration. AlCl 3 was dissolved in distilled water and administered orally once daily at a dose of 175 mg/kg from day 6 onwards (24 h after the completion of retention trial on day 5) for 60 days. This dosing regimen for inducing dementia using AlCl 3 was determined according to the previous reports and the high rate of induction and low mortality, which was evident in the pilot study conducted. SML and RIV, at various doses, were administered 45 min before administration of AlCl 3 orally after suspending them in 0.5% sodium carboxy methyl cellulose (CMC) in distilled water for 60 days from day 6. On the basis of escape latency time (ELT) on day 5, animals were divided into six groups (n = 8). The groups were as follows:

Group 1:

Normal control - Received distilled water (5 ml/kg p.o.).

Group 2:

Vehicle control - Receives 0.5% CMC (5 ml/kg p.o.).

Group 3: AlCl 3 (175 mg/kg p.o.).

Group 4: RIV (1 mg/kg p.o.) + AlCl 3 (175 mg/kg p.o.).

Group 5: SML (10 mg/kg p.o.) + AlCl 3 (175 mg/kg p.o.).

Group 6: SML (20 mg/kg p.o.) + AlCl 3 (175 mg/kg p.o.).

The doses of the standard drug RIV (1 mg/kg) and the test drug SML (10 mg/kg and 20 mg/kg) were chosen based on the previous literature reports. [24],[25],[26],[27] Body weight of the animals was taken on a daily basis before the treatments.

Spatial memory assessment using Morris water maze

To investigate the spatial learning and memory abilities of the experimental rats, Morris water maze task was performed as described by Morris [28] with minor modifications. [29] It consisted of a circular tank of 150 cm diameter and 40 cm height. The pool was divided into North-East, South-East, South-West and North-West (NW) quadrants. In the NW quadrant a hidden escape platform (10 cm diameter), was placed 2 cm below the water surface.

All rats were trained to find the escape platform. Animals were given four trials per day for 4 consecutive days. Animals were kept on the platform for 30 s and then removed. The rats that could not reach the platform in 20 s on the 4 th trial-day were excluded from the study. On the probe day (day 5), the hidden platform was removed, and probe trial was performed with a cut off time of 60 s. All the animals were exposed to one retention trial on day 25, 45 and 65 to evaluate the memory consolidation. Data were acquired through a video camera connected to a computerized tracking system (Any Maze, Ugo Basile, Italy) fixed above the centre of the pool.

Dissection and tissue preparation

On day 65, immediately after the retention trial, the animals were sacrificed by decapitation. Brains were rapidly removed, hippocampus and frontal cortex were dissected according to the method described by Glowinski and Iverson. [30] A 10% w/v homogenate of samples was prepared by homogenizing with ice-cooled 0.1 M phosphate buffer potential of Hydrogen (pH) 7.4 using an ultra Turrax T25 homogenizer at a speed of 9500 rpm thrice at an interval of few seconds. The homogenates were then centrifuged at 15,000 rpm at 4°C for 15 min. Supernatant was collected and used for biochemical estimations.

Estimation of acetylcholinesterase activity

In the supernatant, AChE activity was measured by Ellman method using acetylthiocholine iodide as a substrate. [31] To a reaction mixture containing phosphate buffer (2.8 ml, pH 8), acetylthiocholine iodide (0.05 ml) and 0.05 ml of 5,5'-dithio-bis-2-nitrobenzoic acid (DTNB) (Ellman reagent), 0.1 ml of the supernatant was added. The change in absorbance was measured for 4 min at 60 s interval at 412 nm using ultraviolet-visible spectrophotometer and the change in absorbance per minute was calculated. The results were expressed as micromoles of acetylthiocholine iodide hydrolyzed per min per mg protein.

   Biochemical evaluation Top

At the end of the experimental period, animals were mildly anaesthetized with diethyl ether and the blood samples were collected by retro-orbital sinus puncture into microcentrifuge tubes. The tubes were then centrifuged at 10,000 rpm for 10 min at 20°C. After centrifugation, the serum was separated at once, divided into aliquots and stored at −20°C until they were used for biochemical analysis.

Collected serum samples were analyzed colorimetrically for triglycerides (glycerophosphate-oxidase-peroxidase (POD) method), total cholesterol (cholesterol oxidase-POD method), low-density lipoprotein (LDL) and high-density lipoprotein (HDL) levels by end point method as per the manufacturer's instructions with the help of diagnostic kits (Aspen laboratories, Mumbai) using Enzyme Linked Immuno Sorbent Assay (ELISA) plate reader.

Estimation of lipid peroxidation and nitrite level

Estimation of nitrite level

Nitrite level in hippocampus and frontal cortex homogenate was measured by Griess reaction. [32] The extent of lipid peroxidation in hippocampus and frontal cortex was quantitatively determined by the method described by Konings and Drijver. [33]

Estimation of antioxidant enzymes

The catalase activity was determined by the method of Aebi et al., 1984 [34] and glutathione (GSH) activity based upon the reaction between DTNB and sulfhydryl groups of GSH. [35]

Tumor necrosis factor-α Estimation

Level of tumor necrosis factor (TNF-α) in the supernatant was estimated by rat TNF-α kit as per the experimental protocol given by Invitrogen Corporation, USA. It involves a solid phase sandwich ELISA. The level of TNF-α was expressed as pg/mg of protein.

Estimation of total protein

Total protein was estimated in all tissue samples using Pierce; BCA Protein Assay Kit as per the experimental protocol given by Thermo Scientific, USA. Bovine serum albumin was used as a standard.

Statistical analysis

All the data are expressed as mean ± standard error of the mean. Results were analyzed by one-way analysis of variance , followed by Tukey's post-hoc test using Graph Pad Prism version 5.0 software. P <0.05 was considered as statistically significant.

   Results Top

Body weight

After 60 days, AlCl 3 exposure and other treatment groups did not show a significant effect on body weight [Table 1].
Table 1: Effect of AlCl3 and AlCl3+ treatments (RIV, SML) on the body weight of animals before and after treatment

Click here to view

Spatial memory assessment using Morris water maze

Time to reach hidden platform (Escape latency)

Aluminium chloride intoxication resulted in cognitive impairment as evidenced by significant increase in ELT during probe trials. On day 25, RIV and SML (20 mg/kg) produced a significant decrease in ELT when compared to AlCl 3 -treated group. On day, 45 and day 65, all the treatment groups significantly improved the cognitive performance (i.e. decreased ELT) of animals relative to AlCl 3 -treated group [Figure 1]a.
Figure 1: Effect of aluminium chloride (AlCl3) and AlCl3 + treatments (Rivastigmine, Sesamol) on (a) ELT time (latency to reach platform) (b) North-West (NW) latency (c) Percent time spent in target quadrant (NW). (d) Total zone entries and during retention trials before (day 5) and after (day 25, 45 and 65) treatment. Data presented as mean ± standard error of the mean (n = 8). *P < 0.05 as compared to control group and aP < 0.05 as compared to AlCl3 treated group

Click here to view

North-West latency

Following 60 days of AlCl 3 administration, dementia was observed in rats as shown by the significant (P < 0.05) increase in the latency to find the target quadrant (NW). In RIV and SML (10 mg/kg and 20 mg/kg) groups, the latency to find the target quadrant was shortened significantly [Figure 1]b.

Percentage time spent in target quadrant (north-west)

During the probe trials on day 25, 45 and 65, aluminium treated animals were found to spent significantly less time in the target quadrant (NW) as compared to control group. All the treatment groups significantly increased the time spent in the target quadrant relative to aluminium treated group during probe trial. SML (20 mg/kg) was found to have an activity comparable to RIV [Figure 1]c.

Total zone entries

Aluminium treated group showed a significant decrease in total zone transitions on subsequent days of testing as compared to control group. RIV and SML significantly increased total zone transitions of animals as compared to AlCl 3 treated group [Figure 1]d.

Acetylcholinesterase activity

Chronic AlCl 3 exposure significantly decreased AChE activity in the frontal cortex (P < 0.05) and hippocampus (P < 0.05) of rats as compared to normal control group [Figure 2]a and b. RIV also significantly (P < 0.05) decreased cholinesterase activity compared to control group in both hippocampus and frontal cortex. SML (10 mg/kg and 20 mg/kg) significantly reversed the effect of AlCl 3 on AChE activity.
Figure 2: Effect of aluminium chloride (AlCl3) and AlCl3 + treatments (Rivastigmine, Sesamol) on acetylcholinesterase activity in (a) hippocampus (b) frontal cortex. Data presented as mean ± standard error of the mean (n = 8). *P < 0.05 as compared to control group and aP < 0.05 as compared to AlCl3 treated group

Click here to view

Effect of treatments on lipid profile

Chronic administration of AlCl 3 for 60 days caused significant (P < 0.05) reduction in serum HDL levels [Figure 3]a, increase in LDL levels [Figure 3]b, total cholesterol [Figure 3]c, triglycerides [Figure 3]d as compared to control group. Interestingly RIV significantly (P < 0.05) prevented the rise in LDL levels. Treatment with SML prevented the rise in total cholesterol, triglycerides and LDL levels and increased HDL levels as compared to AlCl 3 treated animals.
Figure 3: Effect of aluminium chloride (AlCl3) and AlCl3 + treatments (Rivastigmine, Sesamol) on (a) High-density lipoprotein (b) Low-density lipoprotein (c) Total cholesterol (d) Triglycerides. Data presented as mean ± standard error of the mean (n = 8). *P < 0.05 as compared to control group and aP < 0.05 as compared to AlCl3 treated group

Click here to view

Estimation of lipid peroxidation and nitrite level

Estimation of malondialdehyde level

The malondialdehyde (MDA) levels in the hippocampus [Figure 4]a and frontal cortex [Figure 5]a of aluminium treated rats showed a threefold increase as compared to control group. The elevated MDA levels were significantly reversed by RIV and SML. SML at 10 mg/kg and 20 mg/kg dose level showed a better reduction of MDA levels than RIV in the hippocampus region.
Figure 4: Effect of aluminium chloride (AlCl3) and AlCl3 + treatments (Rivastigmine, Sesamol) on hippocampus (a) malondialdehyde (b) nitrite level (c) glutathione level (d) catalase activity

Click here to view
Figure 5: Effect of aluminium chloride (AlCl3) and AlCl3 + treatments (Rivastigmine, Sesamol) on frontal cortex (a) Malondialdehyde (b) Nitrite level (c) Glutathione level (d) Catalase activity. Data presented as mean ± standard error of the mean (n = 8). *P < 0.05 as compared to control group and aP < 0.05 as compared to AlCl3 treated group

Click here to view

Estimation of nitrite level

Chronic exposure of animals to AlCl 3 caused a significant elevation in nitrite levels in the hippocampus [Figure 4]b] and frontal cortex [Figure 5]b] as compared to control group of animals. RIV and SML (10 and 20 mg/kg) treatments significantly prevented the rise in levels of nitrite in both frontal cortex and hippocampus. In this case, SML (20 mg/kg) was found to reduce nitrite levels comparable to that seen in the control group.

Estimation of antioxidant enzymes

Catalase and glutathione activity

The hippocampus and frontal cortex of the AlCl 3 -treated rats were observed to have significant (P < 0.05) reduction in catalase [Figure 4]d and [Figure 5]d and reduced GSH activity as compared to control animals [Figure 4]c and [Figure 5]c. RIV (1 mg/kg) and SML (10 mg/kg, 20 mg/kg) enhanced the catalase, and GSH levels significantly as compared to AlCl 3 treated group.

Estimation of tumor necrosis factor-α in hippocampus

Tumor necrosis factor-α levels were significantly (P < 0.05) increased (threefold) in the hippocampus of AlCl 3 treated animals as compared to vehicle group. Treatment with RIV (P < 0.05), SML (20 mg/kg) significantly (P < 0.05) inhibited this rise in TNF-α levels [Figure 6].
Figure 6: Effect of aluminium chloride (AlCl3) and AlCl3 + treatments (Rivastigmine, Sesamol) on tumor necrosis factor-α level in the hippocampus of rats. Data presented as mean ± standard error of the mean (n = 8). *P < 0.05 as compared to control group and aP < 0.05 as compared to AlCl3 treated group

Click here to view

   Discussion Top

The study investigates the ameliorative effect of the lipid-lowering drug, SML, on AlCl 3 -induced behavioral and biochemical changes in rodents. Aluminium was shown to accumulate in higher quantities in hippocampal and cortex regions, which are the sites of memory. [36] Spatial memory tasks are highly sensitive to hippocampus and frontal cortex [37] which is severely affected in neurodegenerative conditions such as AD.

Chronic aluminium exposure in animals was reported to cause cognitive decline. [38],[39] Cognitive dysfunction is evident from decreased activity of experimental animals in Morris water maze, [24] radial arm maze [38] and passive avoidance task. [40] In the present study, the behavioral changes showed by aluminium exposed rats were inconsistent with previous reports. In Morris water maze test, aluminium exposure resulted in a significant decrease in spatial memory as indicated by increased ELT (time required to reach platform), NW latency (time required to reach target quadrant) and decreased percentage time in the NW zone and total zone entries during the probe trial. The treatment with SML and RIV reversed the memory deficit caused by AlCl 3 . This suggests the beneficial effects of SML in correcting memory deficit associated with aluminium exposure.

Cholinergic system in the brain plays a major role in modulating learning and memory. Reduction in AChE activity and acetylcholine levels in hippocampus and cortex have been correlated with loss of cognitive function in AD patients. [41] Long-term potentiation in the hippocampal CA1 pyramidal neurons is modulated by AChE. [15] Moreover, it is essential for survival and growth of cells. [42] In experimental animals, aluminium has been shown to decrease AChE activity. [43] It shows a biphasic response on AChE activity, with an initial increase in the activity of the enzyme followed by a marked decrease. Formation of irreversible aluminium complex with high affinity toward the anionic site of enzyme and slow accumulation of aluminium in the brain has been attributed for such biphasic response. [44],[45] This explains the significant reduction in AChE activity in both hippocampus and cortex observed in our study after chronic AlCl 3 treatment. The toxic effect of aluminium may be attributed to reduced choline uptake, [46] erosion of cholinergic terminals in cortex and hippocampus, [47] and reduced choline acetyl transferase. [48] RIV, the standard AchE inhibitor showed further decrease in AChE activity thereby sustaining the action of the remaining acetylcholine from cholinergic neurons. SML was found to increase the AChE levels in aluminium-exposed rats; this may be attributed to the ability of SML to re-establish the acetylcholine release, thus protecting cholinergic neurons.

Apart from cholinergic deficit leading to memory impairment, effect of dyslipidemia on behavioral changes has been studied. In AD patients, elevation in the levels of total serum cholesterol and LDL-associated cholesterol has been implicated. [49] An increase in the membrane cholesterol enhances the lipid raft area, and the APP present in the rafts gets into contact with β-secretase very easily leading to increased Aβ production. [18] Aluminium through its dyslipidemic property could have contributed to a strong lipid membrane rafts in the brain neuronal membrane leading to AD like syndrome in rats. The dyslipidemia due to aluminium treatment (elevated levels of total cholesterol, LDL, triglycerides and decreased HDL levels) is largely attributed to the accumulation of aluminium in liver causing alteration in lipid metabolism. [50] In our previous study, SML was found to reduce both serum triacylglycerol and cholesterol levels. [19] In the present study, chronic treatment using SML was able to bring down the raised cholesterol, LDL, and triglycerides levels due to aluminium exposure. It also increased the HDL (good cholesterol) level comparable to control.

Oxidative stress and neuro-inflammation are involved in the pathology of neurodegenerative disorders. [51] Lipids are highly vulnerable to oxidative stress. The polyunsaturated fatty acids present in brain get attacked by the free radicals leading to the production of toxic aldehydes as 4-hydroxynonenal and acrolein which in turn, lead to conformational changes of proteins. Studies have suggested the possible involvement of Aβ induced lipid peroxidation in brain generating free radicals and reactive aldehydes resulting in neurodegeneration. [52],[53] Nitric oxide (NO), a signaling molecule regulates many physiological functions in the body. It also acts as a free radical to induce nitrergic stress. The nitrergic stress in turn activates the mitochondrial pathway of apoptosis through up regulation of p53, [54] cytochrome c release [55] and through p38 mitogen-activated protein kinase pathway [56] leading to neuronal death. In our study, we observed a significant increase in nitrite and MDA levels in aluminium treated group in accordance with the previous reports. [57] Further, aluminium treated rats showed a decrease in antioxidant system viz., catalase and GSH levels indicating considerable oxidative stress caused by the toxicant. Both RIV and SML treatment normalized the altered levels of nitrite, MDA levels and antioxidant enzyme like catalase, GSH. This may be due to the antioxidant effect of SML [58] and inhibition of NO synthase. [21],[22] Ameliorative effect of SML on oxidative stress may be considered as one of the approaches to correct aluminium mediated neurotoxicity.

Accumulation of abnormal protein aggregates like Aβ42 and free radicals (viz., nitrite, reactive oxygen species, reactive nitrogen species) may trigger cellular stress and neuroinflammation by activation of the brain's innate immune system involving microglia and astrocytes. Activation of these immune cells results in the release of inflammatory mediators such as TNF-α, interferon-α, Interleukin-6 resulting in neurodegeneration. [59],[60] It has been observed that aluminium exposure has resulted in elevated TNF-α, a key cytokine which stimulates microglia to release glutamate causing excitotoxicity. [61],[62] Similar to this we also observed a significant increase in TNF-α level in hippocampus following chronic aluminium exposure. This rise in TNF-α was counteracted by SML indicating its role in preventing neuroinflammation.

   Conclusion Top

Sesamol treatment demonstrates a protective effect against AlCl 3 -induced cognitive dysfunction in rats. The aluminium mediated biochemical changes were reversed, where SML enhanced AChE level in hippocampus and cortex regions through correcting hyperlipidemia, reducing oxidative stress, NO and TNF-α level. Further studies are awaited to establish the role of SML as a potential candidate to control neuronal disturbances.

   Acknowledgment Top

We thank Manipal College of Pharmaceutical Sciences, Manipal and Manipal University for providing research facility and Department of Science (FIST-Scheme) for providing infrastructural support.

   References Top

Campbell A. The potential role of aluminium in Alzheimer's disease. Nephrol Dial Transplant 2002;17 Suppl 2:17-20.  Back to cited text no. 1
Flaten TP. Aluminium as a risk factor in Alzheimer's disease, with emphasis on drinking water. Brain Res Bull 2001;55:187-96.  Back to cited text no. 2
McLachlan D. Aluminium and the risk for Alzheimer's disease. Environmetrics 1995;6:233-75.  Back to cited text no. 3
McLachlan DR, Bergeron C, Smith JE, Boomer D, Rifat SL. Risk for neuropathologically confirmed Alzheimer's disease and residual aluminium in municipal drinking water employing weighted residential histories. Neurology 1996;46:401-5.  Back to cited text no. 4
Kawahara M, Kato M, Kuroda Y. Effects of aluminium on the neurotoxicity of primary cultured neurons and on the aggregation of beta-amyloid protein. Brain Res Bull 2001;55:211-7.  Back to cited text no. 5
Campbell A, Kumar A, La Rosa FG, Prasad KN, Bondy SC. Aluminium increases levels of beta-amyloid and ubiquitin in neuroblastoma but not in glioma cells. Proc Soc Exp Biol Med 2000;223:397-402.  Back to cited text no. 6
Kumar V, Bal A, Gill KD. Impairment of mitochondrial energy metabolism in different regions of rat brain following chronic exposure to aluminium. Brain Res 2008;1232:94-103.  Back to cited text no. 7
Lemire J, Mailloux R, Puiseux-Dao S, Appanna VD. Aluminium-induced defective mitochondrial metabolism perturbs cytoskeletal dynamics in human astrocytoma cells. J Neurosci Res 2009;87:1474-83.  Back to cited text no. 8
Oteiza PI. A mechanism for the stimulatory effect of aluminium on iron-induced lipid peroxidation. Arch Biochem Biophys 1994;308:374-9.  Back to cited text no. 9
Verstraeten SV, Oteiza PI. Al (3+)-mediated changes in membrane physical properties participate in the inhibition of polyphosphoinositide hydrolysis. Arch Biochem Biophys 2002;408:263-71.  Back to cited text no. 10
el-Sebae AH, Abdel-Ghany ME, Shalloway D, Abou Zeid MM, Blancato J, Saleh MA. Aluminium interaction with human brain tau protein phosphorylation by various kinases. J Environ Sci Health B 1993;28:763-77.  Back to cited text no. 11
Gulya K, Rakonczay Z, Kása P. Cholinotoxic effects of aluminium in rat brain. J Neurochem 1990;54:1020-6.  Back to cited text no. 12
Ghribi O, Herman MM, Forbes MS, DeWitt DA, Savory J. GDNF protects against aluminium-induced apoptosis in rabbits by upregulating Bcl-2 and Bcl-XL and inhibiting mitochondrial Bax translocation. Neurobiol Dis 2001;8:764-73.  Back to cited text no. 13
Kawahara M, Kato-Negishi M, Hosoda R, Imamura L, Tsuda M, Kuroda Y. Brain-derived neurotrophic factor protects cultured rat hippocampal neurons from aluminium maltolate neurotoxicity. J Inorg Biochem 2003;97:124-31.  Back to cited text no. 14
Wang B, Xing W, Zhao Y, Deng X. Effects of chronic aluminium exposure on memory through multiple signal transduction pathways. Environ Toxicol Pharmacol 2010;29:308-13.  Back to cited text no. 15
Sethi P, Jyoti A, Singh R, Hussain E, Sharma D. Aluminium-induced electrophysiological, biochemical and cognitive modifications in the hippocampus of aging rats. Neurotoxicology 2008;29:1069-79.  Back to cited text no. 16
Ribes D, Colomina MT, Vicens P, Domingo JL. Impaired spatial learning and unaltered neurogenesis in a transgenic model of Alzheimer's disease after oral aluminium exposure. Curr Alzheimer Res 2010;7:401-8.  Back to cited text no. 17
Fonseca AC, Resende R, Oliveira CR, Pereira CM. Cholesterol and statins in Alzheimer's disease: Current controversies. Exp Neurol 2010;223:282-93.  Back to cited text no. 18
Swathy SS, Indira M. The Ayurvedic drug, Ksheerabala, ameliorates quinolinic acid-induced oxidative stress in rat brain. Int J Ayurveda Res 2010;1:4-9.  Back to cited text no. 19
[PUBMED]  Medknow Journal  
Kumar N, Mudgal J, Parihar VK, Nayak PG, Kutty NG, Rao CM. Sesamol treatment reduces plasma cholesterol and triacylglycerol levels in mouse models of acute and chronic hyperlipidemia. Lipids 2013;48:633-8.  Back to cited text no. 20
Kumar P, Kalonia H, Kumar A. Sesamol attenuate 3-nitropropionic acid-induced Huntington-like behavioral, biochemical, and cellular alterations in rats. J Asian Nat Prod Res 2009;11:439-50.  Back to cited text no. 21
Chu PY, Chien SP, Hsu DZ, Liu MY. Protective effect of sesamol on the pulmonary inflammatory response and lung injury in endotoxemic rats. Food Chem Toxicol 2010;48:1821-6.  Back to cited text no. 22
Hsu DZ, Chen KT, Li YH, Chuang YC, Liu MY. Sesamol delays mortality and attenuates hepatic injury after cecal ligation and puncture in rats: Role of oxidative stress. Shock 2006;25:528-32.  Back to cited text no. 23
Bihaqi SW, Sharma M, Singh AP, Tiwari M. Neuroprotective role of Convolvulus pluricaulis on aluminium induced neurotoxicity in rat brain. J Ethnopharmacol 2009;124:409-15.  Back to cited text no. 24
Kumar P, Kumar A. Protective effect of rivastigmine against 3-nitropropionic acid-induced Huntington's disease like symptoms: Possible behavioural, biochemical and cellular alterations. Eur J Pharmacol 2009;615:91-101.  Back to cited text no. 25
Kumar P, Kalonia H, Kumar A. Protective effect of sesamol against 3-nitropropionic acid-induced cognitive dysfunction and altered glutathione redox balance in rats. Basic Clin Pharmacol Toxicol 2010;107:577-82.  Back to cited text no. 26
Chopra K, Tiwari V, Arora V, Kuhad A. Sesamol suppresses neuro-inflammatory cascade in experimental model of diabetic neuropathy. J Pain 2010;11:950-7.  Back to cited text no. 27
Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 1984;11:47-60.  Back to cited text no. 28
Vorhees CV, Williams MT. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat Protoc 2006;1:848-58.  Back to cited text no. 29
Glowinski J, Iversen LL. Regional studies of catecholamines in the rat brain. I. The disposition of [3H] norepinephrine, [3H] dopamine and [3H] dopa in various regions of the brain. J Neurochem 1966;13:655-69.  Back to cited text no. 30
Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88-95.  Back to cited text no. 31
Bredt DS, Snyder SH. Nitric oxide: A physiologic messenger molecule. Annu Rev Biochem 1994;63:175-95.  Back to cited text no. 32
Konings AW, Drijver EB. Radiation effects on membranes. I. Vitamin E deficiency and lipid peroxidation. Radiat Res 1979;80:494-501.  Back to cited text no. 33
Aebi H. Catalase in vitro. Methods Enzymol 1984;105:121-6.  Back to cited text no. 34
Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 1979;582:67-78.  Back to cited text no. 35
Poucet B. Spatial cognitive maps in animals: New hypotheses on their structure and neural mechanisms. Psychol Rev 1993;100:163-82.  Back to cited text no. 36
Macphail EM. The Neuroscience of Animal Intelligence: From the Seahare to the Seahorse. Newyork: Columbia University Press; 1993.  Back to cited text no. 37
Abdel-Aal RA, Assi AA, Kostandy BB. Rivastigmine reverses aluminium-induced behavioral changes in rats. Eur J Pharmacol 2011;659:169-76.  Back to cited text no. 38
Khan KA, Kumar N, Nayak PG, Nampoothiri M, Shenoy RR, Krishnadas N, et al. Impact of caffeic acid on aluminium chloride-induced dementia in rats. J Pharm Pharmacol 2013;65:1745-52.  Back to cited text no. 39
Bhalla P, Garg ML, Dhawan DK. Protective role of lithium during aluminium-induced neurotoxicity. Neurochem Int 2010;56:256-62.  Back to cited text no. 40
Hammond P, Brimijoin S. Acetylcholinesterase in Huntington's and Alzheimer's diseases: Simultaneous enzyme assay and immunoassay of multiple brain regions. J Neurochem 1988;50:1111-6.  Back to cited text no. 41
Appleyard ME. Secreted acetylcholinesterase: Non-classical aspects of a classical enzyme. Trends Neurosci 1992;15:485-90.  Back to cited text no. 42
Kumar A, Dogra S, Prakash A. Protective effect of curcumin (Curcuma longa), against aluminium toxicity: Possible behavioral and biochemical alterations in rats. Behav Brain Res 2009;205:384-90.  Back to cited text no. 43
Kumar S. Aluminium-induced biphasic effect. Med Hypotheses 1999;52:557-9.  Back to cited text no. 44
Kaizer RR, Corrêa MC, Gris LR, da Rosa CS, Bohrer D, Morsch VM, et al. Effect of long-term exposure to aluminium on the acetylcholinesterase activity in the central nervous system and erythrocytes. Neurochem Res 2008;33:2294-301.  Back to cited text no. 45
Julka D, Sandhir R, Gill KD. Altered cholinergic metabolism in rat CNS following aluminium exposure: Implications on learning performance. J Neurochem 1995;65:2157-64.  Back to cited text no. 46
Platt B, Fiddler G, Riedel G, Henderson Z. Aluminium toxicity in the rat brain: Histochemical and immunocytochemical evidence. Brain Res Bull 2001;55:257-67.  Back to cited text no. 47
Hofstetter JR, Vincent I, Bugiani O, Ghetti B, Richter JA. Aluminium-induced decreases in choline acetyltransferase, tyrosine hydroxylase, and glutamate decarboxylase in selected regions of rabbit brain. Neurochem Pathol 1987;6:177-93.  Back to cited text no. 48
Jarvik GP, Wijsman EM, Kukull WA, Schellenberg GD, Yu C, Larson EB. Interactions of apolipoprotein E genotype, total cholesterol level, age, and sex in prediction of Alzheimer's disease: A case-control study. Neurology 1995;45:1092-6.  Back to cited text no. 49
Fyiad AA. Aluminium toxicity and oxidative damage reduction by melatonin in rats. J Trace Elem Med Biol 2007;3:1210-7.  Back to cited text no. 50
Nampoothiri M, Reddy ND, John J, Kumar N, Kutty Nampurath G, Rao Chamallamudi M. Insulin blocks glutamate-induced neurotoxicity in differentiated SH-SY5Y neuronal cells. Behav Neurol 2014;2014:674164.  Back to cited text no. 51
Mark RJ, Lovell MA, Markesbery WR, Uchida K, Mattson MP. A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid beta-peptide. J Neurochem 1997;68:255-64.  Back to cited text no. 52
Mark RJ, Pang Z, Geddes JW, Uchida K, Mattson MP. Amyloid beta-peptide impairs glucose transport in hippocampal and cortical neurons: Involvement of membrane lipid peroxidation. J Neurosci 1997;17:1046-54.  Back to cited text no. 53
Thomas DD, Espey MG, Ridnour LA, Hofseth LJ, Mancardi D, Harris CC, et al. Hypoxic inducible factor 1alpha, extracellular signal-regulated kinase, and p53 are regulated by distinct threshold concentrations of nitric oxide. Proc Natl Acad Sci U S A 2004;101:8894-9.  Back to cited text no. 54
Takuma K, Phuagphong P, Lee E, Mori K, Baba A, Matsuda T. Anti-apoptotic effect of cGMP in cultured astrocytes: Inhibition by cGMP-dependent protein kinase of mitochondrial permeable transition pore. J Biol Chem 2001;276:48093-9.  Back to cited text no. 55
Guner YS, Ochoa CJ, Wang J, Zhang X, Steinhauser S, Stephenson L, et al. Peroxynitrite-induced p38 MAPK pro-apoptotic signaling in enterocytes. Biochem Biophys Res Commun 2009;384:221-5.  Back to cited text no. 56
Sharma P, Ahmad Shah Z, Kumar A, Islam F, Mishra KP. Role of combined administration of Tiron and glutathione against aluminium-induced oxidative stress in rat brain. J Trace Elem Med Biol 2007;21:63-70.  Back to cited text no. 57
Prasad NR, Mahesh T, Menon VP, Jeevanram RK, Pugalendi KV. Photoprotective effect of sesamol on UVB-radiation induced oxidative stress in human blood lymphocytes in vitro. Environ Toxicol Pharmacol 2005;20:1-5.  Back to cited text no. 58
Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat Rev Neurosci 2007;8:57-69.  Back to cited text no. 59
Harry GJ, Kraft AD. Neuroinflammation and microglia: Considerations and approaches for neurotoxicity assessment. Expert Opin Drug Metab Toxicol 2008;4:1265-77.  Back to cited text no. 60
Tsunoda M, Sharma RP. Modulation of tumor necrosis factor alpha expression in mouse brain after exposure to aluminium in drinking water. Arch Toxicol 1999;73:419-26.  Back to cited text no. 61
Takeuchi H, Jin S, Suzuki H, Doi Y, Liang J, Kawanokuchi J, et al. Blockade of microglial glutamate release protects against ischemic brain injury. Exp Neurol 2008;214:144-6.  Back to cited text no. 62


  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6]

  [Table 1]

This article has been cited by
1 Amelioration of aluminum-induced hepatic and nephrotoxicity by Premna odorata extract is mediated by lowering MMP9 and TGF-ß gene alterations in Wistar rat
Walaa M. S. Ahmed, Marwa A. Ibrahim, Nermeen A. Helmy, Akram M. ElKashlan, Abeer H. Elmaidomy, Amr R. Zaki
Environmental Science and Pollution Research. 2022;
[Pubmed] | [DOI]
2 Effects of free fatty acids and peroxide on thermal loss of sesamol and formation of its transformation products in soybean oil
Jingnan Chen, Ya Wang, Wei Liu, Feihong Zhang, Jun Li, Huifang Yang, Yanlan Bi
LWT. 2022; : 113236
[Pubmed] | [DOI]
3 The anti-Alzheimer potential of Tamarindus indica: an in vivo investigation supported by in vitro and in silico approaches
Abeer H. Elmaidomy, Usama Ramadan Abdelmohsen, Faisal Alsenani, Hanan F. Aly, Shams Gamal Eldin Shams, Eman A. Younis, Kawkab A. Ahmed, Ahmed M. Sayed, Asmaa I. Owis, Naglaa Afifi, Dalia El Amir
RSC Advances. 2022; 12(19): 11769
[Pubmed] | [DOI]
4 Evaluation of the quality, environmental safety and biological value of functional curd product
V V Kryuchkova, I F Gorlov, M I Slozhenkina, N V Lomonova, S N Belik, P V Skripin
IOP Conference Series: Earth and Environmental Science. 2022; 965(1): 012039
[Pubmed] | [DOI]
5 Sesamol alleviates chronic intermittent hypoxia-induced cognitive deficits via inhibiting oxidative stress and inflammation in rats
Panpan Zhang, Yanhui Wang, Hongyang Wang, Jie Cao
NeuroReport. 2021; 32(2): 105
[Pubmed] | [DOI]
6 The combination of sesamol and clofibric acid moieties leads to a novel potent hypolipidemic agent with antioxidant, anti-inflammatory and hepatoprotective activity
Yundong Xie, Jiping Liu, Yongheng Shi, Bin Wang, Xiaoping Wang, Wei Wang, Meng Sun, Xinya Xu, Haihui Jiang, Min Guo, Yiyi He, Cuicui Ren, Lifei Cheng
Bioorganic & Medicinal Chemistry Letters. 2021; 44: 128121
[Pubmed] | [DOI]
7 An Appraisal of Current Pharmacological Perspectives of Sesamol: A Review
Bellamkonda Bosebabu, Sri Pragnya Cheruku, Mallikarjuna Rao Chamallamudi , Madhavan Nampoothiri, Rekha R. Shenoy, Krishnadas Nandakumar, Vipan K. Parihar, Nitesh Kumar
Mini-Reviews in Medicinal Chemistry. 2020; 20(11): 988
[Pubmed] | [DOI]
8 Sesamol Alleviates Obesity-Related Hepatic Steatosis via Activating Hepatic PKA Pathway
Hai-Yan Xu, Liang Yu, Ji-Hua Chen, Li-Na Yang, Cui Lin, Xiu-Quan Shi, Hong Qin
Nutrients. 2020; 12(2): 329
[Pubmed] | [DOI]
9 Sesamol: a powerful functional food ingredient from sesame oil for cardioprotection
Premkumar Jayaraj, Chandrakala A. Narasimhulu, Sanjay Rajagopalan, Sampath Parthasarathy, Rajagopal Desikan
Food & Function. 2020; 11(2): 1198
[Pubmed] | [DOI]
10 Effect of insulin on spatial memory in aluminum chloride-induced dementia in rats
Madhavan Nampoothiri,Nitesh Kumar,Grandhi Venkata Ramalingayya,Nampurath Gopalan Kutty,Nandakumar Krishnadas,Chamallamudi Mallikarjuna Rao
NeuroReport. 2017; 28(9): 540
[Pubmed] | [DOI]
11 Sesamol ameliorates high-fat and high-fructose induced cognitive defects via improving insulin signaling disruption in the central nervous system
Zhigang Liu,Yali Sun,Qinglian Qiao,Tong Zhao,Wentong Zhang,Bo Ren,Qian Liu,Xuebo Liu
Food Funct.. 2017;
[Pubmed] | [DOI]
12 Therapeutic impact of grape leaves polyphenols on certain biochemical and neurological markers in AlCl3-induced Alzheimer’s disease
Ibrahim H. Borai, Magda K. Ezz, Maha Z. Rizk, Hanan F. Aly, Mahmoud El-Sherbiny, Azza A. Matloub, Ghadha I. Fouad
Biomedicine & Pharmacotherapy. 2017; 93: 837
[Pubmed] | [DOI]
13 Sesamol ameliorates diet-induced obesity in C57BL/6J mice and suppresses adipogenesis in 3T3-L1 cells via regulating mitochondria-lipid metabolism
Zhigang Liu,Qinglian Qiao,Yali Sun,Yuwei Chen,Bo Ren,Xuebo Liu
Molecular Nutrition & Food Research. 2017; : 1600717
[Pubmed] | [DOI]
14 Exogenous phosphatidylcholine supplementation retrieve aluminum-induced toxicity in male albino rats
Asmaa Fahmy Khafaga
Environmental Science and Pollution Research. 2017; 24(18): 15589
[Pubmed] | [DOI]
15 Astaxanthin ameliorates aluminum chloride-induced spatial memory impairment and neuronal oxidative stress in mice
Md. Mamun Al-Amin,Hasan Mahmud Reza,Hasan Mahmud Saadi,Waich Mahmud,Abdirahman Adam Ibrahim,Musrura Mefta Alam,Nadia Kabir,A.R.M. Saifullah,Sarjana Tarannum Tropa,A.H.M. Ruhul Quddus
European Journal of Pharmacology. 2016; 777: 60
[Pubmed] | [DOI]


    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

  In this article
    Materials and me...
    Biochemical eval...
    Article Figures
    Article Tables

 Article Access Statistics
    PDF Downloaded163    
    Comments [Add]    
    Cited by others 15    

Recommend this journal