Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2015  |  Volume : 11  |  Issue : 42  |  Page : 283-291

Attenuation of reactive oxygen/nitrogen species with suppression of inducible nitric oxide synthase expression in RAW 264.7 macrophages by bark extract of Buchanania lanzan

1 Institution of Excellence, Vijnana Bhavana, Mysore, Karnataka, India
2 Department of Studies in Biotechnology, University of Mysore, Mysore, Karnataka, India

Correspondence Address:
H S Prakash
Department of Studies in Biotechnology, University of Mysore, Mysore - 570 006, Karnataka
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0973-1296.153080

Rights and Permissions

Background: Oxidative stress is one of the most critical factors implicated in disease conditions. Buchanania lanzan Spr. (Anacardiaceae) bark powder preparation has been reported for treating an inflammatory condition in the Ayurvedic Pharmacopoeia of India. Objective: In the present study, we investigate the effect of the bark methanol extract (BLM) on reactive oxygen/nitrogen species (ROS/RNS), the expression of protein and mRNA of inducible nitric oxide synthase (iNOS) in RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS) and sodium nitroprusside (SNP) to provide scientific validation of the above said medicinal property. Materials and Methods: The capacity to quench ROS and RNS was evaluated by 5-(and-6) chloromethyl-20,70-dichlorodihydrofluorescein diacetate acetyl ester fluorescence and nitrite estimations in LPS/SNP-stimulated macrophages respectively. The protein and transcript expression of iNOS was evaluated through Western Blot and reverse transcription-polymerase chain reaction (RT-PCR) analysis respectively. Results: Macrophages pretreated with BLM (>100 μg/mL) for 24 h, stimulated with LPS for the last 18 h of experimental duration recorded a significantly (P < 0.05) reduced levels of ROS (3.45-fold) against LPS-stimulated conditions (5.7-fold). SNP-stimulation resulted in increased NO accumulation (17-fold) which was neutralized by BLM at >100 μg/ml (1.6-fold) credited to a reduced protein and mRNA expression of iNOS as recorded by Western blots and RT-PCR results respectively. The reversed-phase liquid chromatography-diode array detection analysis identified the presence of 4-hydroxybenzoic acid, quercetin and p-coumaric acid (Rt values 5.444, 5.569 and 9.580 respectively). Conclusions: The potential of BLM inhibiting ROS/RNS production validates the medical use of bark, could find beneficial application under conditions of immune stimulation and/or bacterial infection.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded175    
    Comments [Add]    
    Cited by others 7    

Recommend this journal