Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2014  |  Volume : 10  |  Issue : 39  |  Page : 622-629

Signal transducer and activators of transcription 3 regulates cryptotanshinone-induced apoptosis in human mucoepidermoid carcinoma cells

1 Department of Oral Pathology and Cancer Biology, School of Dentistry, and Institute of Oral Bioscience, Chonbuk National Univerisity, Jeonju, 561-756, South Korea
2 Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonbuk National Univerisity, Jeonju, 561-756, South Korea
3 Department of Dental Hygiene, Division of Health Sciences, Cheongju University, Cheongju, 360-764, South Korea

Correspondence Address:
Sung-Dae Cho
Departments of Oral Pathology and Cancer Biology, School of Dentistry, and Institute of Oral Bioscience, Chonbuk National University, Jeonju, 561-756
South Korea
Login to access the Email id

Source of Support: This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A2A2A01003731 and 2013R1A1A2057882, Conflict of Interest: None

DOI: 10.4103/0973-1296.139802

Rights and Permissions

Background: Cryptotanshinone (CT) is a biologically active compound from the root of Salvia miltiorrhiza that has been reported to induce apoptosis in various cancer cell lines; but, it has not yet been fully explored in human mucoepidermoid carcinoma (MEC). Objective: Here, we demonstrated the apoptotic effects and its related mechanism in MC-3 and YD-15 human MEC cell lines. Materials and Methods: The effects of CT on apoptotic activity were evaluated by cell proliferation assay, Western blotting, 4'-6-diamidino-2-phenylindole staining, reverse transcription-polymerase chain reaction, and luciferase assay. Results: Our data show that CT treatment of MC-3 cells results in anti-proliferative and apoptotic activities in MC-3 and it is accompanied by a decrease in phosphorylation and dimerization of signal transducer and activators of transcription 3 (STAT3). CT decreased the expression levels of myeloid cell leukemia-1 (Mcl-1) and surviving, whereas Bcl-xL expression was not changed. CT clearly regulates survivin protein at a transcriptional level and alters Mcl-1 through proteasome-dependent protein degradation. In addition, CT-induced apoptotic cell death in YD-15, another human MEC cell line, was associated with the inhibition of STAT3 phosphorylation. Conclusion: These data suggest that CT could be a good apoptotic inducer through modification of STAT3 signaling in human MEC cell lines.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded78    
    Comments [Add]    
    Cited by others 5    

Recommend this journal