Pharmacokinetics and tissue distribution study of tanshinone IIA after oral administration of Bushen Huoxue Qubi granules to rats with blood stasis syndrome
Yuanqing Wang1, Jianye Yan2, Shunxiang Li2, Xiong Cai3, Wei Wang4, Kun Luo2, Dan Huang2, Jiesheng Gao5
1 Department of Chemistry, Key Laboratory of Modernization of Chinese Medicine; Department of Biotechnology, Laboratory of Biotechnology and Engineering, School of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China 2 Department of Chemistry, Key Laboratory of Modernization of Chinese Medicine, Changsha, China 3 Department of Diagnosis, Diagnostic Institute of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China 4 Department of Chemistry, TCM and Ethnomedicine Innovation and Development Laboratory, School of Pharmacy, Changsha, China 5 Department of Rheumatism and Immunology, Xiangya Second Hospital of Central South University, Changsha, China
Correspondence Address:
Shunxiang Li Key Laboratory of Modernization of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208 China
 Source of Support: This work was supported by the Science and
Technology Innovative Research Team in Higher Educational
Institutions of Hunan Province for Innovation of Chinese Medicine
and Resources sustained utilization (2010212), Hunan Provincial
Science and Technology Department Foundation (2009TP4051.1),
Changsha Scientific Research Foundation (k1003034.31)., Conflict of Interest: None  | Check |
DOI: 10.4103/0973-1296.137369
|
Background: Bushen Huoxue Qubi (BHQ) granules, a traditional Chinese medicine preparation, has been clinically used for the treatment of the blood stasis syndrome. Objective: The main objective is to investigate whether the diseased condition would alter the pharmacokinetics and tissue distribution of tanshinone IIA in BHQ, which was given orally to the acute blood stasis rats. Materials and Methods: The main bioactive constituent in BHQ, tanshinone IIA, was measured in the plasma and tissues of animals by the high performance liquid chromatography with ultraviolet detection. The analysis was successfully performed on an Agilent TC-C 18 column (250 × 4.6 mm I.D., 5 μm) protected with a Octadecylsilane (ODS) guard column (10 × 4.6 mm I.D., 5 μm). The mobile phase was aqueous solution (A) (containing 0.40% aqueous acetic acid) and acetonitrile (B). The conditions of the solvent gradient elution were 35-40% (B) in 0-15 min, 40-42% (B) in 15-18 min and 42-70% (B) in 18-30 min at a flow rate of 1.0 mL/min. Detection was conducted with wavelength of 270 nm at 30°C. Results: Good linearity relationships were found (r2 > 0.9955) over the investigated concentration range for bio-samples. Blood stasis was associated with significantly higher area under the concentration-time curve (AUC), the maximum plasma concentration (C max ) and biological half-life (t 1/2 ), lower total body clearance (CL) and apparent volume of distribution (Vd) of tanshinone IIA in plasma and higher AUC 0-t of tanshinone IIA in the analyzed tissues of rats treated with BHQ. Conclusion: Blood stasis could alter pharmacokinetics and tissue distribution of tanshinone IIA in BHQ. |