ORIGINAL ARTICLE |
|
Year : 2014 | Volume
: 10
| Issue : 37 | Page : 110-114 |
|
Stereo and region-selective biosynthesis of two new dihydroartemisinic acid glycosides by suspension-cultured cells of Artemisia annua
Jianhua Zhu1, Zihan Zeng1, Liyan Song2, Yanshan Hu1, Wei Wen1, Rongming Yu1
1 Biotechnological Institute of Chinese Materia Medica, Guangzhou 510632, China 2 Department of Pharmacology Jinan University, Guangzhou 510632, China
Correspondence Address:
Rongming Yu College of Pharmacy, Jinan University, Guangzhou-510632 China
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/0973-1296.127357
|
|
Background: The system of plant-cultured cells is one of the optimal systems to investigate biosynthesis pathway and their bioactive intermediates. Objective: To study the biosynthesis of dihydroartemisinic acid (1) by suspension-cultured cells of Artemisia annua. Materials and Methods: Substrate (compound 1) was administered into the suspension-cultured cells of A. annua and co-cultured for 2 days. The methanol extract was separated on various column chromatography methods and the structures of two biosynthesis products were elucidated based on the analysis of 1 H NMR, 13 C NMR, 2D NMR, and ESI-MS. Time-course curve was also established. Furthermore, in vitro antitumor activities of compounds 1-3 against HepG2, K562, and A549 cell lines were evaluated by MTT assay. Results: Two new compounds were obtained, namely 3α-hydroxy-dihydroartemisinic acid-α-D - glucopyranosyl ester (2) and 15-hydroxy-cadin-4-en-12-oic acid-β-d - glucopyranosyl ester (3). The results demonstrated that the cultured cells of A. annua possessed the abilities to stereo-selective hydroxylate and region-selective glycosylate sesquiterpene compounds in a highly efficient manner. Inhibitory effects of compounds 1-3 on proliferation of HepG2, K562, and A549 cell lines in vitro were also investigated. Conclusion: Two new dihydroartemisinic acid glycosides were obtained by stereo- and region-selective biosynthesis with cultured cells of A. annua. |
|
|
|
[FULL TEXT] [PDF]* |
|
 |
|