Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2013  |  Volume : 9  |  Issue : 36  |  Page : 338-343

The stability investigation of compound Danshen injection (a traditional medicine) with a new high-performance liquid chromatography method

1 Department of Pharmaceutical Engineering, Tianjin University of Commerce; Tianjin Key Laboratory of Food Biotechnology, Tianjin 300134, China
2 Department of Pharmaceutical Engineering, Tianjin University of Commerce, Tianjin 300134, China

Correspondence Address:
Junbo Xie
Department of Pharmaceutical Engineering, Tianjin University of Commerce, Tianjin 300134
Login to access the Email id

Source of Support: This work was supported by a grant from the National Natural Science Foundation of China (No.:31000749)., Conflict of Interest: None

DOI: 10.4103/0973-1296.117830

Rights and Permissions

Background: Compound Danshen injection (CDSI, a traditional medicine) is an effective drug for the treatment of cardiovascular and cerebrovascular diseases. However, the research about its stability is absent. Objective: A new high-performance liquid chromatography method was developed to assay its main effective constituents, i.e., propanoid acid (PA), protocatechuic aldehyde (PHA), salvianolic acid B (SAB), salvianolic acid A (SAA), and rosmarinic acid (RA). Through the newly found method, the stability of CDSI was to be investigated. Materials and Methods: The analysis was performed by a reverse-phase gradient elution using an aqueous mobile phase (containing 0.1% acetic acid) modified by acetonitrile, and detection was made simultaneously at 280 nm and 325 nm. The method was validated for accuracy, precision and limits of detection. The effects of some environmental storage conditions (light and temperature) on the stability of CDSI were investigated. Results: This method is precise, simple, and convenient. The result showed that illumination and temperature had an obvious effect on CDSI's stability. SAA is the most unstable one among the five components. In the condition of common light, it decomposed rapidly to almost 50% after only 4 h, and 100% after 8 h. PA, RA, and PHA might come from Danshen, was also the transformed products from other components in store process. Conclusion: The result indicated that the main active constituents in CDSI suffered from the illumination and temperature greatly. CDSI should be stored at low temperature and kept away from light.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded97    
    Comments [Add]    
    Cited by others 4    

Recommend this journal