Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 

  Table of Contents  
Year : 2013  |  Volume : 9  |  Issue : 33  |  Page : 28-32  

Chemical composition and biological evaluation of essential oils of Pulicaria jaubertii

1 Department of Pharmacognosy, College of Pharmacy, King Saud University. P.O. Box 22452, Riyadh 11495, KSA; Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
2 Department of Pharmacognosy, College of Pharmacy, King Saud University. P.O. Box 22452, Riyadh 11495, KSA
3 Department of Pharmacognosy, College of Pharmacy, King Saud University. P.O. Box 22452, Riyadh 11495, KSA; Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt

Date of Submission23-Jan-2012
Date of Decision05-Mar-2012
Date of Web Publication05-Mar-2013

Correspondence Address:
Ghada A Fawzy
Ministry of Higher Education, King Saud University, Medical Studies and Sciences Sections, Riyadh 11495, P.O. Box 22452, Kingdom of Saudi Arabia

Login to access the Email id

Source of Support: This research project was supported by a grant from the research centre of the centre for Female Scienti.c and Medical Colleges in the King Saud University., Conflict of Interest: None

DOI: 10.4103/0973-1296.108133

Rights and Permissions

Background: The present study reports and compares the results of Gas Chromatographic-Mass analyses of Pulicaria jaubertii leaf (P-1) and root (P-2) essential oils, as well as their in vitro antimicrobial and cytotoxic activities. Materials and Methods: The chemical composition of P-1 and P-2 essential oils of P. jaubertii, was investigated by GC-MS. Moreover, the essential oils were evaluated for their antimicrobial activity using the broth micro-dilution assay for minimum inhibitory concentrations (MIC). The crystal violet staining method (CVS) was used for evaluation of their cytotoxic activity on HEPG-2 and MCF-7 human cell lines. Results: This investigation led to the identification of 16 constituents in P-1 , and 23 constituents in P-2 , representing 99.92% and 94.74% of the oils respectively. Oxygenated monoterpenes were found to be the major group in both P-1 (99.47%) and P-2 (89.88%). P-1 consists almost entirely of p-Menth-6-en-2-one (Carvotanacetone, 98.59%). P-2 is characterized by high contents of each of Dimethoxydurene (38.48%), Durenol (26.89%) and 2′,4Ͳ-Dimethoxy-3′-methylacetophenone (20.52%). Both oils showed moderate antimicrobial activity against the Gram-positive strains and C. albicans. However, no activity was shown against Gram-negative bacteria. P-1 showed a significant cytotoxic activity against both MCF-7 and HEPG-2 (IC 50 = 3.8 and 5.1 μg/ml, respectively), while P-2 showed selective cytotoxic activity against MCF-7 cell line (IC 50 = 9.3 μg/ml). Conclusion: The potent cytotoxic and moderate antimicrobial activities of P-1 may be attributed to its high content of Carvotanacetone.

Keywords: Carvotanacetone, cytotoxicity, essential oil, Pulicaria jaubertii

How to cite this article:
Fawzy GA, Al Ati HY, El Gamal AA. Chemical composition and biological evaluation of essential oils of Pulicaria jaubertii. Phcog Mag 2013;9:28-32

How to cite this URL:
Fawzy GA, Al Ati HY, El Gamal AA. Chemical composition and biological evaluation of essential oils of Pulicaria jaubertii. Phcog Mag [serial online] 2013 [cited 2022 Jun 24];9:28-32. Available from: http://www.phcog.com/text.asp?2013/9/33/28/108133

   Introduction Top

Genus Pulicaria, belonging to the tribe Inuleae of the Asteraceae family, consists of ca. 100 species distributed in Europe, North Africa and Asia. [1] The genus is represented in Saudi Arabia by eight species. Pulicaria jaubertii Gamal-Eldin [syn. Pulicaria orientalis Jaub.] is a perennial fragrant herb with erect branches up to 50 cm high. It is known in Arabic as "Eter Elraee". [2] The Pulicaria species proved various activities such as anti-inflammatory, antileukemic, [3] potential cancer chemopreventive and cytotoxic agents. [4] Previous investigations reported that P. Jaubertii showed antimicrobial, antifungal, antimalarial and insecticidal properties. [5] Different species of Pulicaria have been studied to establish the composition of their essential oils. [6],[7],[8],[9] In this study, we report and compare the results of GC-MS analyses of P. jaubertii leaf (P-1) and root (P-2) essential oils, as well as their in vitro antimicrobial and cytotoxic activities.

   Materials and Methods Top

Plant material

P. jaubertii was collected in March 2011 from Jazan, South of Saudi Arabia. The plant was identified by Professor Mohammed Youssef, Department of Pharmacognosy, College of Pharmacy, King Saud University, where a voucher specimen (no. 15715 A) has been deposited.

Extraction of the essential oil

The freshly cut leaves and roots (400g of each) were separately subjected to hydrodistillation for 6h using a Clevenger-type apparatus according to the method recommended in the European Pharmacopoeia. [10] The obtained oils were dried over anhydrous sodium sulphate and stored in air-tight, amber colored glass vials at 4°C.

Gas chromatography analysis

GC-MS analyses of the volatile oils were carried out using Focus GC/DSQ II mass spectrometer. The Column used was Trace TR-5 (30m × 0.25mm i.d., film thickness 0.25μm). Helium was used as carrier gas at flow rate of 1 ml/min. in split mode 20%. The oven program started with an initial temperature of 50° C for 1 min, and then it was raised to 250° C with 4° C/min. rate and finally held for 2 min. at this temperature. Kovat's retention indices were calculated using co-chromatographed standard hydrocarbons. The individual compounds were identified by comparing their retention indices relative to C8-C26 n-alkanes and by comparing their mass spectra and retention times with data already available in the NIST (National Institute of Standardization and Technology) library and literature. [11]

Determination of antimicrobial activity

Test organisms

The following strains of pathogenic microorganisms were used for the antimicrobial assay: Bacillus subtilis ATCC 26633, Staphylococcus aureus ATCC 25923,  Escherichia More Details coli ATCC 25922 and Pseudomonas aeruginosa ATTC 27853. The yeast strain used in this study was Candida albicans ATCC 10231. The microbial strains were obtained from American type culture collection (ATCC).

Broth micro-dilution assay for minimum inhibitory concentration (MIC)

The broth micro-dilution technique was used to determine the MIC values. [12] All of the experiments were performed in Mueller Hinton broth (Hi Media, Mumbai) for the bacterial strains and RPMI 1640 medium for the fungal strain. Two-fold serial dilution of the essential oils was prepared in a 96-well microtiter plate up to 2mg/ml. The prepared microtiter plates containing the microorganisms and the essential oils were then incubated at 37°C for 24h for bacterial growth and at 27°C for 48h for fungal growth. The growth of organisms was observed as turbidity, which was visually observed. Controls were set up with equivalent quantities of dimethyl sulfoxide 10% solution, which was used as a solvent for the essential oils. Amoxicillin, Gentamicin and Nystatin (Sigma, USA) were used as positive controls. All of the experiments were performed in triplicate.

Cytotoxicity assay

Cell culture

Mammalian cell lines: MCF-7 cells (human breast cancer cell line) and HEPG-2 (human liver cancer cell line), were obtained from VACSERA Tissue Culture Unit. The cells were propagated in Dulbeccos modified Eagles Medium (DMEM) supplemented with 10% heat-inactivated fetal bovine serum (Sigma Chemical Co., St. Louis, Mo, USA), 1% L-glutamine, HEPES buffer and 50 μg/ml gentamycin (Sigma Chemical Co., St. Louis, Mo, USA). All cells were maintained at 37°C in a humidified atmosphere with 5% CO 2 and were sub-cultured two times a week.

Evaluation of cellular cytotoxicity

The cytotoxic activity was evaluated by the crystal violet staining (CVS) method described by Saotome et al[13] and modified by Itagaki et al. [14] Briefly, in a 96-well tissue culture microplate, the cells were seeded at a cell concentration of 1×10 4 cells per well in 100μl of growth medium. Fresh medium containing different concentrations of P-1 and P-2 were added after 24h of seeding at 37°C. Serial twofold dilutions of the tested oils were added to confluent cell monolayers dispensed into 96-well, flat-bottomed microtiter plates using a multichannel pipette. The microtiter plates were incubated at 37°C in a humidified incubator with 5% CO 2 for a period of 48h. Three wells were used for each concentration of the test sample. Control cells were incubated without test sample and with or without DMSO. The little percentage of DMSO present in the wells was found not to affect the experiment. After the 48 h incubation period, the viable cells yield was determined by a colorimetric method. In brief, after the end of the incubation period, media were aspirated and the crystal violet solution (1%) was added to each well for at least 30 minutes. The stain was removed and the plates were rinsed using distilled water. Glacial acetic acid (30%) was then added to all wells and mixed thoroughly. The quantitative analysis (colorimetric evaluation of fixed cells) was performed by measuring the absorbance in an automatic Microplate reader (TECAN, Inc.) at 595nm. All results were corrected for background absorbance detected in wells without added stain. Treated samples were compared with the cell control in the absence of the tested oils. All experiments were carried out in triplicate. The effect on cell growth was calculated as the difference in absorbance percentage in presence and absence of the tested oils and illustrated in a dose-response curve. The concentration at which the growth of cells was inhibited to 50% of the control (IC 50 ) was obtained from this dose-response curve. The standard antitumor drug used was vinblastine sulfate.

Statistical analyses

Data were expressed as means ± S.D. For multi-variable comparisons, one-way ANOVA was conducted, followed by Tukey-Kramer testing using the GraphPad InStat (ISI Software) computer program. Differences were considered significant at P values of less than 0.05.

   Results and Discussion Top

Composition of the essential oils

Hydrodistillation of the leaves of P. jaubertii gave a pale yellow oil P-1 , with a strong pleasant aromatic odor (yield 0.5% v/w), while hydrodistillation of the roots gave a dark yellow oil, P-2 (yield 0.43% v/w). The chemical compositions of the investigated oils are presented in [Table 1], where the identified components are listed in order of their elution on the Trace TR-5 column with their retention indices and percentages. A total of 16 volatile constituents were identified in P-1 , while 23 components were identified in P-2 , representing 99.92% and 94.74% of oils respectively. The results of the GC-MS analyses of the two oils revealed some important variations between them. Oxygenated monoterpenes were found to be the major group in both P-1 and P-2 , constituting 99.47% and 89.88% of the oils, respectively. P-1 consists almost entirely of p-Menth-6-en-2-one (Carvotanacetone, 98.59%), which was also found to be the major constituent of the essential oils of Pulicaria undulate[15] and Pulicaria mauritanica. [16] P-2 is characterized by high contents of each of Dimethoxydurene (38.48%), Durenol (26.89%) and 2′,4′-Dimethoxy-3′-methylacetophenone (20.52%). Both oils contain small percentages of monoterpenes, sesquiterpenes and oxygenated sesquiterpenes.
Table 1: Chemical composition of P-1 and P-2

Click here to view

To the best of our knowledge this work represents the first GC-MS analysis of P. jaubertii root oil. Previous GC-MS study of P. jaubertii aerial parts oil, [6] confirmed the presence of oxygenated monoterpenes such as thujone and linalool, in addition to presence of mono- and sesquiterpenes but their percentages were not reported.

Antimicrobial activity

The antimicrobial activity of the investigated oils was evaluated by determining MIC values against two Gram-positive and two Gram-negative bacteria as well as against one fungal strain. The results of the assay are shown in [Table 2]. The results exhibited that the oils had varying degrees of growth inhibition against the Gram-positive strains and C. albicans. However, no activity was shown against Gram-negative bacteria. P-1 demonstrated a higher antibacterial activity (MIC range 0.5-1 mg/ml) than P-2 (MIC 2 mg/ml) against Bacillus subtilis and Staphylococcus aureus.P-1 showed antifungal activity against C. albicans at 1 mg/ml, while P-2 did not show any antifungal activity.
Table 2: Antimicrobial activity of the investigated essential oils P-1 and P-2

Click here to view

Oxygenated monoterpenes were reported to be responsible for the antimicrobial activity of several essential oils. [17] Moreover the predominance of Carvotanacetone (98.59%) in P-1 could contribute to the observed antimicrobial activity. It has been reported that Gram-positive bacteria are more susceptible to essential oils than Gram-negative bacteria. [18] Resistance of Gram-negative bacteria against essential oils has been attributed to the presence of a hydrophilic outer membrane containing a hydrophilic polysaccharide chain which acts as a barrier to the hydrophobic essential oil. [19]

In vitro antitumor evaluation

The antitumor activity of P-1 and P-2 against MCF-7 and HEPG-2 carcinoma cell lines, was determined using CVS method and vinblastine as a reference drug. The response parameter (IC 50 ) was calculated for each cell line [Table 3] and [Table 4].
Table 3: In vitro antitumor activities of P-1 and P-2 on MCF-7

Click here to view
Table 4: In vitro antitumor activities of P-1 and P-2 on HEPG-2

Click here to view

P-2 showed a lower cytotoxic activity (IC 50 = 9.3 and 18.3 μg/ml) than P-1 , but it could be seen that both P-1 and P-2 showed concentration-dependent decrease in surviving fractions of MCF-7 and HEPG-2 cells. P-1 is more potent as a cytotoxic agent, than P-2 . It exhibited a significant cytotoxic activity against both cell lines. In case of MCF-7, IC 50 of P-1 (IC 50 = 3.8 μg/ml) was less than that of the reference drug used (IC 50 = 4.6 μg/ml) revealing its higher cytotoxic potency. As for HEPG-2 carcinoma cell lines IC 50 of P-1 (IC 50 = 5.1 μg/ml) was close to that of the reference drug (IC 50 = 4.6 μg/ml).

The potent cytotoxic effect of P-1 may be attributed to its high content of Carvotanacetone, which was previously reported to have anticarcinogenic and chemopreventive activity. [20] P-2 showed a selective cytotoxic activity against MCF-7 cell line (IC 50 = 9.3μg/ml) compared with the reference drug (IC 50 = 4.6 μg/ml). It seems from our results that the human breast cancer (MCF-7) cell line is the most sensitive to the studied essential oils.

   Conclusion Top

To the best of our knowledge, this is the first report on either the chemical composition or bioactivity of the root essential oil and on the bioactivity of the leaf essential oil of Pulicaria jaubertii.

   Acknowledgements Top

The authors are very thankful to Dr. Adnan J. Al-Rehaily, Professor of Pharmacognosy, for providing the plant material. This research project was supported by a grant from the "Research Center of the Center for Female Scientific and Medical Colleges", Deanship of Scientific Research, King Saud University.

   References Top

1.Williams CA, Harborne JB, Greenham JR, Grayer RJ, Kite GC, Eagles J. Variations in lipophilic and vacuolar flavonoids among European Pulicaria species. Phytochem. 2003; 64: 275-83.  Back to cited text no. 1
2.Chaudhary SA, Al Jowaid AA. Vegetation of the Kingdom of Saudi Arabia. Riyadh, Saudi Arabia: Ministry of Agriculture & Water, National Agriculture and Water Research Center; 1999.  Back to cited text no. 2
3.Al Yahya A, Khafagy M, John F, Mikhail D, John M. Phytochemical and biological screening of Saudi medicinal plants. Part 6. Isolation of 2α-hydroxyalantolactone the antileukemic principle of Francoeuria crispa. J Nat Prod. 1984; 47: 1013-17.  Back to cited text no. 3
4.Al Yahya A, El Sayed AM, Mossa JS, Koziowski JF, Antoun MD, Ferin M, et al. Potential cancer chemopreventive and cytotoxic agents from Pulicaria crispa. J Nat Prod. 1988; 51: 321-4.  Back to cited text no. 4
5.Dubaie AS, El Khulaidi AA. Medicinal and aromatic plants in Yemen. Ebadi Center for Studies and Publishing, Sana'a-Yemen; 2005.  Back to cited text no. 5
6.Alkhathalan HZ, Al Hazimi HM. Chemical constituents of T. aurilactum, R. vesicarius, P. orientalis, P. somalensis and A. abyssinica grown in Saudi Arabia. J Chem Soc Pak. 1996;18:309-12.  Back to cited text no. 6
7.Weyerstahl A, Marschall H, Wahlburg H, Christiansen C, Rustaiyan A, Mirdjalili F. Constituents of the essential oil of Pulicaria gnapholdes from Iran. Flavour Frag J. 1999; 14:121-30.  Back to cited text no. 7
8.Al Yousuf M, Bashir A, Veres K, Dobos A, Nagy G, Mathe I, et al. Essential oil of Pulicaria glutinosa Jaub. From the United Arab Emirates. JEOR. 2001; 13: 454-5.  Back to cited text no. 8
9.Hanbali FEL, Akssira M, Ezoubeiri A, Gadhi CE, Mellouki F, Benherraf A, et al. Chemical composition and antibacterial activity of essential oil of Pulicaria odora L. J Ethnopharmacol. 2005; 99: 399-401.  Back to cited text no. 9
10.European Pharmacopoeia. Council of Europe. 5 th ed. Strasbourg Cedex; 2004. p. 217-8.  Back to cited text no. 10
11.Adams RP. Identification of essential oils by Ion Trap Mass Spectroscopy. New York, London; Academic Press;1989.  Back to cited text no. 11
12.NCCLS (National Committee for Clinical Laboratory Standards). Performance standards for antimicrobial susceptibility testing. Proceedings of the 9 th international supplement M100-S9. Wayne, PA: NCCLS; 1999.  Back to cited text no. 12
13.Saotome K, Morita H, Umeda M. Cytotoxicity test with simplified crystal violet staining method using microtitre plates and its application to injection drugs. Toxicol In Vitro. 1989;3: 317-21.   Back to cited text no. 13
14.Itagaki H, Hagino S, Kato S, Kobayashi T, Umeda M. An in vitro alternative to the draize eye-irritation test: Evaluation of the crystal violet staining method. Toxicol In Vitro. 1991; 5: 139-43.  Back to cited text no. 14
15.EL Kamali HH, Yousif MO, Ahmed OI, Sabir SS. Phytochemical analysis of the essential oil from aerial parts of Pulicaria undulata (L.) Kostel from Sudan. Ethno Leaflets. 2009; 13:467-71.  Back to cited text no. 15
16.Cristofari G, Znini M, Majidi L, Bouyanzer A, Al Deyab SS, Paolini J, et al. Chemical composition and anti-corrosive activity of Pulicaria mauritanica essential oil against the corrosion of mild steel in 0.5 M H 2 SO 4 . Int J Electrochem. 2011; 6: 6699-717.  Back to cited text no. 16
17.Carson CF, Riley TV. Antimicrobial activity of the major components of the essential oil of Melaleuka alternifolia. J Appl Bacteriol. 1995; 78: 264-9.  Back to cited text no. 17
18.Burt S. Essential oil: Their antibacterial properties and potential applications in foods. Int J Food Microbiol. 2004; 94: 223-53.  Back to cited text no. 18
19.Kalemba D, Kunicka A. Antibacterial and antifungal properties of essential oils. Curr Med Chem. 2003; 10: 813-29.  Back to cited text no. 19
20.Zheng GQ, Kenney PM, Luke KT. Effects of carvone compounds on glutathione S-transferase activity in A/J mice. J Agr Food Chem. 1992; 40: 751-5.  Back to cited text no. 20


  [Table 1], [Table 2], [Table 3], [Table 4]

This article has been cited by
1 A comparative evaluation of physicochemical properties of pecan (Carya illinoinensis (Wangenh.) K. Koch) husk by different drying method
Yangyang Zhang, Chengyu Jiang, Huijuan Jing, Xiaoyuan Fan, Mengchen Peng, Wenping Lv, Hongxin Wang
Journal of Food Measurement and Characterization. 2022;
[Pubmed] | [DOI]
2 Application of essential oils as preservatives in food systems: challenges and future prospectives – a review
Qais Ali Al-Maqtari, Abdur Rehman, Amer Ali Mahdi, Waleed Al-Ansi, Minping Wei, Zhou Yanyu, Hsu Mon Phyo, Obakeng Galeboe, Weirong Yao
Phytochemistry Reviews. 2021;
[Pubmed] | [DOI]
3 Supercritical fluid extraction of four aromatic herbs and assessment of the volatile compositions, bioactive compounds, antibacterial, and anti-biofilm activity
Qais Ali Al-Maqtari, Waleed Al-Ansi, Amer Ali Mahdi, Adel Ali Saeed Al-Gheethi, Bilal Sajid Mushtaq, Abdulqader Al-Adeeb, Minping Wei, Weirong Yao
Environmental Science and Pollution Research. 2021; 28(20): 25479
[Pubmed] | [DOI]
4 Evaluation of bioactive compounds and antibacterial activity of Pulicaria jaubertii extract obtained by supercritical and conventional methods
Qais Ali Al-Maqtari, Amer Ali Mahdi, Waleed Al-Ansi, Jalaleldeen Khaleel Mohammed, Minping Wei, Weirong Yao
Journal of Food Measurement and Characterization. 2021; 15(1): 449
[Pubmed] | [DOI]
5 Screening of potential cytotoxic activities of some medicinal plants of Saudi Arabia
Merajuddin Khan, Mujeeb Khan, Syed F. Adil, Hamad Z. Alkhathlan
Saudi Journal of Biological Sciences. 2021;
[Pubmed] | [DOI]
6 Synthesis and theoretical calculations of metal-antibiotic chelation with thiamphenicol: in vitro DNA and HSA binding, molecular docking, and cytotoxicity studies
Abeer A. Sharfalddin, Abdul-Hamid Emwas, Mariusz Jaremko, Mostafa A. Hussien
New Journal of Chemistry. 2021; 45(21): 9598
[Pubmed] | [DOI]
7 Phytochemical Characterization, In Vitro Anti-Inflammatory, Anti-Diabetic, and Cytotoxic Activities of the Edible Aromatic Plant; Pulicaria jaubertii
Hamdoon A. Mohammed, Mohammed F. Abdelwahab, El-Sayed M. El-Ghaly, Ehab A. Ragab
Molecules. 2021; 26(1): 203
[Pubmed] | [DOI]
8 Comparative Chemical Profiles and Phytotoxic Activity of Essential Oils of Two Ecospecies of Pulicaria undulata (L.) C.A.Mey
Ahmed M. Abd-ELGawad, Saud L. Al-Rowaily, Abdulaziz M. Assaeed, Yasser A. EI-Amier, Abd El-Nasser G. El Gendy, Elsayed Omer, Dakhil H. Al-Dosari, Giuliano Bonanomi, Hazem S. Kassem, Abdelsamed I. Elshamy
Plants. 2021; 10(11): 2366
[Pubmed] | [DOI]
9 Ovicidal and Latent Effects of Pulicaria jaubertii (Asteraceae) Leaf Extracts on Aedes aegypti
Ahmed Z. Shehata, Tarek M. El-Sheikh, Raafat M. Shaapan, Sobhy Abdel-Shafy, Abdullah D. Alanazi
Journal of the American Mosquito Control Association. 2020; 36(3): 161
[Pubmed] | [DOI]
10 Sesquiterpenes-Rich Essential Oil from Above Ground Parts of Pulicaria somalensis Exhibited Antioxidant Activity and Allelopathic Effect on Weeds
Abdulaziz Assaeed, Abdelsamed Elshamy, Abd El-Nasser El Gendy, Basharat Dar, Saud Al-Rowaily, Ahmed Abd-ElGawad
Agronomy. 2020; 10(3): 399
[Pubmed] | [DOI]
11 Chemical Composition and Biological Activities of the Essential Oil from Leaves and Flowers of Pulicaria incisa sub. candolleana (Family Asteraceae)
Esraa A. Shahat,Riham O. Bakr,Omayma A. Eldahshan,Nahla A. Ayoub
Chemistry & Biodiversity. 2017; 14(4): e1600156
[Pubmed] | [DOI]
12 Chemical Composition and Antimicrobial Activity of Essential Oils from the Aerial Parts of Asteriscus graveolens (Forssk .) Less . and Pulicaria incisa (Lam .) DC.: Two Asteraceae Herbs Growing Wild in the Hoggar
Faiza Chaib,Hocine Allali,Malika Bennaceur,Guido Flamini
Chemistry & Biodiversity. 2017; : e1700092
[Pubmed] | [DOI]
13 Pulicaria jaubertii E. Gamal-Eldin reduces triacylglyceride content and modifies cellular antioxidant pathways in 3T3-L1 adipocytes
Ghanya Al-Naqeb,Jana Rousová,Alena Kubátová,Matthew J. Picklo
Chemico-Biological Interactions. 2016; 253: 48
[Pubmed] | [DOI]
14 Kazakh Ziziphora Species as Sources of Bioactive Substances
Karel Šmejkal,Milan Malaník,Karlygash Zhaparkulova,Zuriyadda Sakipova,Liliya Ibragimova,Galya Ibadullaeva,Milan Žemlicka
Molecules. 2016; 21(7): 826
[Pubmed] | [DOI]
15 Chemical composition of the essential oil fromPulicaria vulgarisvar.graeca(Sch.-Bip.) Fiori (Asteraceae) growing wild in Sicily and its antimicrobial activity
Simona Casiglia,Luana Riccobono,Maurizio Bruno,Federica Senatore,Felice Senatore
Natural Product Research. 2016; 30(3): 259
[Pubmed] | [DOI]
16 A new monoterpene glucoside and complete assignments of dihydroflavonols ofPulicaria jaubertii: potential cytotoxic and blood pressure lowering activity
Ehab A. Ragab,Mohamed Raafat
Natural Product Research. 2015; : 1
[Pubmed] | [DOI]
17 Volatile Constituents of the Aerial Parts ofPulicaria sicula(L.)MorisGrowing Wild in Sicily: Chemotaxonomic Volatile Markers of the GenusPulicariaGaertn.
Antonella Maggio,Luana Riccobono,Vivienne Spadaro,Patrizia Campisi,Maurizio Bruno,Felice Senatore
Chemistry & Biodiversity. 2015; 12(5): 781
[Pubmed] | [DOI]
18 A Survey of Chemical Compositions and Biological Activities of Yemeni Aromatic Medicinal Plants
Bhuwan Chhetri,Nasser Ali,William Setzer
Medicines. 2015; 2(2): 67
[Pubmed] | [DOI]
19 Essential Oils and Their Constituents as Anticancer Agents: A Mechanistic View
Nandini Gautam,Anil K. Mantha,Sunil Mittal
BioMed Research International. 2014; 2014: 1
[Pubmed] | [DOI]
20 chemical composition and biological evaluation of essential oils of pulicaria jaubertii
fawzy, ghada a and al ati, hanan y and el gamal, ali a
pharmacognosy magazine. 2013; 9(33): 28
. ;


    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

  In this article
    Materials and Me...
    Results and Disc...
    Article Tables

 Article Access Statistics
    PDF Downloaded102    
    Comments [Add]    
    Cited by others 21    

Recommend this journal